TU Darmstadt / ULB / TUbiblio

Continual learning based machining simulation for the prediction of NC signals

Sarikaya, Erkut ; Elling, Magnus von ; Lu, Xu ; Weigold, Matthias (2023)
Continual learning based machining simulation for the prediction of NC signals.
In: Procedia CIRP, 120
doi: 10.1016/j.procir.2023.09.094
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

This article presents a continual learning method for the prediction of NC signals of a machine tool. The regression model has been accomplished with a long short-term memory recurrent neural network consisting of a dynamic multi-head architecture to satisfy tool-specific learning. Additionally, a regularization based method has been used. The results demonstrate that catastrophic forgetting could be significantly reduced by applying the proposed continual learning method. In an experimental validation the model shows good results for the prediction of the spindle current despite high process diversity in a real production environment.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Sarikaya, Erkut ; Elling, Magnus von ; Lu, Xu ; Weigold, Matthias
Art des Eintrags: Bibliographie
Titel: Continual learning based machining simulation for the prediction of NC signals
Sprache: Englisch
Publikationsjahr: 2023
Verlag: Elsevier B.V.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Procedia CIRP
Jahrgang/Volume einer Zeitschrift: 120
DOI: 10.1016/j.procir.2023.09.094
URL / URN: https://www.sciencedirect.com/science/article/pii/S221282712...
Kurzbeschreibung (Abstract):

This article presents a continual learning method for the prediction of NC signals of a machine tool. The regression model has been accomplished with a long short-term memory recurrent neural network consisting of a dynamic multi-head architecture to satisfy tool-specific learning. Additionally, a regularization based method has been used. The results demonstrate that catastrophic forgetting could be significantly reduced by applying the proposed continual learning method. In an experimental validation the model shows good results for the prediction of the spindle current despite high process diversity in a real production environment.

Freie Schlagworte: catastrophic forgetting, machine learning, machine tool, material removal, milling
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > TEC Fertigungstechnologie
Hinterlegungsdatum: 15 Jan 2024 09:46
Letzte Änderung: 17 Jan 2024 11:12
PPN: 514763426
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen