TU Darmstadt / ULB / TUbiblio

Evolutionary origins of DNA repair pathways: role of oxygen catastrophe in the emergence of DNA glycosylases

Prorok, Paulina ; Grin, Inga R. ; Matkarimov, Bakhyt T. ; Ishchenko, Alexander A. ; Laval, Jacques ; Zharkov, Dmitry O. ; Saparbaev, Murat (2021)
Evolutionary origins of DNA repair pathways: role of oxygen catastrophe in the emergence of DNA glycosylases.
In: Cells, 10 (7)
doi: 10.3390/cells10071591
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

It was proposed that the last universal common ancestor (LUCA) evolved under high temperatures in an oxygen-free environment, similar to those found in deep-sea vents and on volcanic slopes. Therefore, spontaneous DNA decay, such as base loss and cytosine deamination, was the major factor affecting LUCA’s genome integrity. Cosmic radiation due to Earth’s weak magnetic field and alkylating metabolic radicals added to these threats. Here, we propose that ancient forms of life had only two distinct repair mechanisms: versatile apurinic/apyrimidinic (AP) endonucleases to cope with both AP sites and deaminated residues, and enzymes catalyzing the direct reversal of UV and alkylation damage. The absence of uracil–DNA N-glycosylases in some Archaea, together with the presence of an AP endonuclease, which can cleave uracil-containing DNA, suggests that the AP endonuclease-initiated nucleotide incision repair (NIR) pathway evolved independently from DNA glycosylase-mediated base excision repair. NIR may be a relic that appeared in an early thermophilic ancestor to counteract spontaneous DNA damage. We hypothesize that a rise in the oxygen level in the Earth’s atmosphere ~2 Ga triggered the narrow specialization of AP endonucleases and DNA glycosylases to cope efficiently with a widened array of oxidative base damage and complex DNA lesions.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Prorok, Paulina ; Grin, Inga R. ; Matkarimov, Bakhyt T. ; Ishchenko, Alexander A. ; Laval, Jacques ; Zharkov, Dmitry O. ; Saparbaev, Murat
Art des Eintrags: Bibliographie
Titel: Evolutionary origins of DNA repair pathways: role of oxygen catastrophe in the emergence of DNA glycosylases
Sprache: Englisch
Publikationsjahr: 2021
Ort: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Cells
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 7
Kollation: 33 Seiten
DOI: 10.3390/cells10071591
Zugehörige Links:
Kurzbeschreibung (Abstract):

It was proposed that the last universal common ancestor (LUCA) evolved under high temperatures in an oxygen-free environment, similar to those found in deep-sea vents and on volcanic slopes. Therefore, spontaneous DNA decay, such as base loss and cytosine deamination, was the major factor affecting LUCA’s genome integrity. Cosmic radiation due to Earth’s weak magnetic field and alkylating metabolic radicals added to these threats. Here, we propose that ancient forms of life had only two distinct repair mechanisms: versatile apurinic/apyrimidinic (AP) endonucleases to cope with both AP sites and deaminated residues, and enzymes catalyzing the direct reversal of UV and alkylation damage. The absence of uracil–DNA N-glycosylases in some Archaea, together with the presence of an AP endonuclease, which can cleave uracil-containing DNA, suggests that the AP endonuclease-initiated nucleotide incision repair (NIR) pathway evolved independently from DNA glycosylase-mediated base excision repair. NIR may be a relic that appeared in an early thermophilic ancestor to counteract spontaneous DNA damage. We hypothesize that a rise in the oxygen level in the Earth’s atmosphere ~2 Ga triggered the narrow specialization of AP endonucleases and DNA glycosylases to cope efficiently with a widened array of oxidative base damage and complex DNA lesions.

Freie Schlagworte: DNA repair, DNA glycosylases, AP endonucleases, protein folds, structural homology
Zusätzliche Informationen:

This article belongs to the Special Issue DNA Repair, Genome Stability/Diversity, and Oxidative Stress and Aging, from Bacteria to Human Cells: A Themed Issue in Honor of Prof. Miroslav Radman

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin, Gesundheit
Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
10 Fachbereich Biologie > Cell Biology and Epigenetics
Hinterlegungsdatum: 15 Jan 2024 07:40
Letzte Änderung: 15 Jan 2024 07:40
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen