TU Darmstadt / ULB / TUbiblio

Molecular Dynamics Study of the Nanoindentation Behavior of Cu₆₄Zr₃₆/Cu Amorphous/Crystalline Nanolaminate Composites

Wu, Wen-Ping ; Şopu, Daniel ; Eckert, Jürgen (2024)
Molecular Dynamics Study of the Nanoindentation Behavior of Cu₆₄Zr₃₆/Cu Amorphous/Crystalline Nanolaminate Composites.
In: Materials, 2021, 14 (11)
doi: 10.26083/tuprints-00019644
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Amorphous/crystalline nanolaminate composites have aroused extensive research interest because of their high strength and good plasticity. In this paper, the nanoindentation behavior of Cu₆₄Zr₃₆/Cu amorphous/crystalline nanolaminates (ACNLs) is investigated by molecular dynamics (MD) simulation while giving special attention to the plastic processes occurring at the interface. The load–displacement curves of ACNLs reveal small fluctuations associated with shear transformation zone (STZ) activation in the amorphous layer, whereas larger fluctuations associated with dislocations emission occur in the crystalline layer. During loading, local STZ activation occurs and the number of STZs increases as the indentation depth in the amorphous layer increases. These STZs are mostly located around the indenter, which correlates to the high stresses concentrated around the indenter. When the indenter penetrates the crystalline layer, dislocations emit from the interface of amorphous/crystalline, and their number increases with increasing indentation depth. During unloading, the overall number of STZs and dislocations decreases, while other new STZs and dislocations become activated. These results are discussed in terms of stress distribution, residual stresses, indentation rate and indenter radius.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Wu, Wen-Ping ; Şopu, Daniel ; Eckert, Jürgen
Art des Eintrags: Zweitveröffentlichung
Titel: Molecular Dynamics Study of the Nanoindentation Behavior of Cu₆₄Zr₃₆/Cu Amorphous/Crystalline Nanolaminate Composites
Sprache: Englisch
Publikationsjahr: 12 Januar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials
Jahrgang/Volume einer Zeitschrift: 14
(Heft-)Nummer: 11
Kollation: 12 Seiten
DOI: 10.26083/tuprints-00019644
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19644
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Amorphous/crystalline nanolaminate composites have aroused extensive research interest because of their high strength and good plasticity. In this paper, the nanoindentation behavior of Cu₆₄Zr₃₆/Cu amorphous/crystalline nanolaminates (ACNLs) is investigated by molecular dynamics (MD) simulation while giving special attention to the plastic processes occurring at the interface. The load–displacement curves of ACNLs reveal small fluctuations associated with shear transformation zone (STZ) activation in the amorphous layer, whereas larger fluctuations associated with dislocations emission occur in the crystalline layer. During loading, local STZ activation occurs and the number of STZs increases as the indentation depth in the amorphous layer increases. These STZs are mostly located around the indenter, which correlates to the high stresses concentrated around the indenter. When the indenter penetrates the crystalline layer, dislocations emit from the interface of amorphous/crystalline, and their number increases with increasing indentation depth. During unloading, the overall number of STZs and dislocations decreases, while other new STZs and dislocations become activated. These results are discussed in terms of stress distribution, residual stresses, indentation rate and indenter radius.

Freie Schlagworte: molecular dynamics (MD) simulation, nanoindentation, amorphous/crystalline nanolaminates (ACNLs), shear transformation zone (STZ), dislocation
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-196449
Zusätzliche Informationen:

This article belongs to the Special Issue Advances in Metallic Glass Matrix Composites

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Hinterlegungsdatum: 12 Jan 2024 14:06
Letzte Änderung: 15 Jan 2024 07:28
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen