Geisenhofer, Markus ; Kummer, Florian ; Müller, Björn (2024)
A discontinuous Galerkin immersed boundary solver for compressible flows: Adaptive local time stepping for artificial viscosity-based shock‐capturing on cut cells.
In: International Journal for Numerical Methods in Fluids, 2019, 91 (9)
doi: 10.26083/tuprints-00015956
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
We present a higher‐order cut cell immersed boundary method (IBM) for the simulation of high Mach number flows. As a novelty on a cut cell grid, we evaluate an adaptive local time stepping (LTS) scheme in combination with an artificial viscosity–based shock‐capturing approach. The cut cell grid is optimized by a nonintrusive cell agglomeration strategy in order to avoid problems with small or ill‐shaped cut cells. Our approach is based on a discontinuous Galerkin discretization of the compressible Euler equations, where the immersed boundary is implicitly defined by the zero isocontour of a level set function. In flow configurations with high Mach numbers, a numerical shock‐capturing mechanism is crucial in order to prevent unphysical oscillations of the polynomial approximation in the vicinity of shocks. We achieve this by means of a viscous smoothing where the artificial viscosity follows from a modal decay sensor that has been adapted to the IBM. The problem of the severe time step restriction caused by the additional second‐order diffusive term and small nonagglomerated cut cells is addressed by using an adaptive LTS algorithm. The robustness, stability, and accuracy of our approach are verified for several common test cases. Moreover, the results show that our approach lowers the computational costs drastically, especially for unsteady IBM problems with complex geometries.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Geisenhofer, Markus ; Kummer, Florian ; Müller, Björn |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | A discontinuous Galerkin immersed boundary solver for compressible flows: Adaptive local time stepping for artificial viscosity-based shock‐capturing on cut cells |
Sprache: | Englisch |
Publikationsjahr: | 9 Januar 2024 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2019 |
Ort der Erstveröffentlichung: | Chichester |
Verlag: | John Wiley & Sons |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | International Journal for Numerical Methods in Fluids |
Jahrgang/Volume einer Zeitschrift: | 91 |
(Heft-)Nummer: | 9 |
DOI: | 10.26083/tuprints-00015956 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/15956 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | We present a higher‐order cut cell immersed boundary method (IBM) for the simulation of high Mach number flows. As a novelty on a cut cell grid, we evaluate an adaptive local time stepping (LTS) scheme in combination with an artificial viscosity–based shock‐capturing approach. The cut cell grid is optimized by a nonintrusive cell agglomeration strategy in order to avoid problems with small or ill‐shaped cut cells. Our approach is based on a discontinuous Galerkin discretization of the compressible Euler equations, where the immersed boundary is implicitly defined by the zero isocontour of a level set function. In flow configurations with high Mach numbers, a numerical shock‐capturing mechanism is crucial in order to prevent unphysical oscillations of the polynomial approximation in the vicinity of shocks. We achieve this by means of a viscous smoothing where the artificial viscosity follows from a modal decay sensor that has been adapted to the IBM. The problem of the severe time step restriction caused by the additional second‐order diffusive term and small nonagglomerated cut cells is addressed by using an adaptive LTS algorithm. The robustness, stability, and accuracy of our approach are verified for several common test cases. Moreover, the results show that our approach lowers the computational costs drastically, especially for unsteady IBM problems with complex geometries. |
Freie Schlagworte: | compressible flow, discontinuous Galerkin, immersed boundary, level set, supersonic, time integration |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-159563 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet für Strömungsdynamik (fdy) Exzellenzinitiative Exzellenzinitiative > Graduiertenschulen Exzellenzinitiative > Graduiertenschulen > Graduate School of Energy Science and Engineering (ESE) |
Hinterlegungsdatum: | 09 Jan 2024 12:29 |
Letzte Änderung: | 10 Jan 2024 09:55 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- A discontinuous Galerkin immersed boundary solver for compressible flows: Adaptive local time stepping for artificial viscosity-based shock‐capturing on cut cells. (deposited 09 Jan 2024 12:29) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |