TU Darmstadt / ULB / TUbiblio

On efficiency of earth-abundant chalcogenide photovoltaic materials buffered with CdS: the limiting effect of band alignment

Ghorbani, Elaheh (2024)
On efficiency of earth-abundant chalcogenide photovoltaic materials buffered with CdS: the limiting effect of band alignment.
In: Journal of Physics: Energy, 2020, 2 (2)
doi: 10.26083/tuprints-00020438
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Earth-abundant and environmentally-friendly Cu₂–II–IV–VI₄ (II = Sr, Ba; IV = Ge, Sn; VI = S,Se) are considered materials for the absorber layers in thin film solar cells. Attempts to understand and improve optoelectronic properties of these newly emerged absorbers resulted in an efficiency of 5.2% in less than two years. However, the energy band alignment at the buffer/absorber interface has not been studied yet; an information which is of crucial importance for designing high performance devices. Therefore, current study focuses on the band offsets between these materials and the CdS buffer. Using first-principles calculations, band discontinuities are calculated at the buffer/absorber interface. The results yield a type-II band alignment between all Cu₂–II–IV–VI₄ absorbers and CdS, hence a negative ΔEc. Adoption of a negative ΔEc (cliff-like conduction band offset) at the buffer/absorber interface, however, gives rise to low open circuit voltage and high interface-related recombinations. Therefore, it is necessary to search for an alternative buffer material that forms a type-I band alignment with these absorbers, where the conduction band minimum and the valence band maximum are both localized on the absorber side.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Ghorbani, Elaheh
Art des Eintrags: Zweitveröffentlichung
Titel: On efficiency of earth-abundant chalcogenide photovoltaic materials buffered with CdS: the limiting effect of band alignment
Sprache: Englisch
Publikationsjahr: 9 Januar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Ort der Erstveröffentlichung: Bristol
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Physics: Energy
Jahrgang/Volume einer Zeitschrift: 2
(Heft-)Nummer: 2
Kollation: 9 Seiten
DOI: 10.26083/tuprints-00020438
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20438
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Earth-abundant and environmentally-friendly Cu₂–II–IV–VI₄ (II = Sr, Ba; IV = Ge, Sn; VI = S,Se) are considered materials for the absorber layers in thin film solar cells. Attempts to understand and improve optoelectronic properties of these newly emerged absorbers resulted in an efficiency of 5.2% in less than two years. However, the energy band alignment at the buffer/absorber interface has not been studied yet; an information which is of crucial importance for designing high performance devices. Therefore, current study focuses on the band offsets between these materials and the CdS buffer. Using first-principles calculations, band discontinuities are calculated at the buffer/absorber interface. The results yield a type-II band alignment between all Cu₂–II–IV–VI₄ absorbers and CdS, hence a negative ΔEc. Adoption of a negative ΔEc (cliff-like conduction band offset) at the buffer/absorber interface, however, gives rise to low open circuit voltage and high interface-related recombinations. Therefore, it is necessary to search for an alternative buffer material that forms a type-I band alignment with these absorbers, where the conduction band minimum and the valence band maximum are both localized on the absorber side.

Freie Schlagworte: earth-abundant chalcogenides, band alignment, buffer/absorber interface, first-principles calculations
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-204382
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Hinterlegungsdatum: 09 Jan 2024 10:38
Letzte Änderung: 10 Jan 2024 09:01
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen