TU Darmstadt / ULB / TUbiblio

High-resolution heat transfer measurements on a rotating turbine endwall with infrared thermography

Ostrowski, T. ; Schiffer, H.-P. (2024)
High-resolution heat transfer measurements on a rotating turbine endwall with infrared thermography.
In: Measurement Science and Technology, 2021, 32 (12)
doi: 10.26083/tuprints-00020468
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Computational thermo-fluid dynamics in the field of turbo machinery research tend to account for transient interaction mechanisms to predict the convective heat transfer within the hot gas path. In this context, the rotor hub side endwall region of the high pressure turbine depicts an object of interest as the near wall flow field may be dominated by rotating flow structures emerging from the disc space cavities. The validation of the applied numerical tools rely on experimental heat transfer setups reproducing such transient boundary conditions. This paper describes an experimental approach to quantify the heat transfer coefficient and the adiabatic wall temperature on the rotating endwall of a large scale test turbine. The wall heat flux distribution in a thin film isolator coated to a well conducting support structure is quantified for a series of quasi-isothermal boundary conditions. A high-resolution infrared camera is used to capture triggered thermograms of the rotating surface. Distributed thermocouples in the base body serve as reference points for camera calibration and to deduce the temperature distribution at the interface to the isolator. The calibration is in-situ and includes the pixel-wise quantification of uncertainties in the surface temperatures. An advanced linear fit approach is applied to derive the unknown adiabatic quantities and their uncertainties. For the examined operating point with a rim seal purge flow rate of 1% the random part of the relative measurement uncertainty is clearly below 10% for the heat transfer coefficient and below 5% for the adiabatic wall temperature. As the evaluation algorithm is designed to consider covariances between the thermocouple and infrared readings, the surface wall heat flux can be evaluated for every single infrared image.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Ostrowski, T. ; Schiffer, H.-P.
Art des Eintrags: Zweitveröffentlichung
Titel: High-resolution heat transfer measurements on a rotating turbine endwall with infrared thermography
Sprache: Englisch
Publikationsjahr: 9 Januar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Ort der Erstveröffentlichung: Bristol
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Measurement Science and Technology
Jahrgang/Volume einer Zeitschrift: 32
(Heft-)Nummer: 12
Kollation: 15 Seiten
DOI: 10.26083/tuprints-00020468
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20468
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Computational thermo-fluid dynamics in the field of turbo machinery research tend to account for transient interaction mechanisms to predict the convective heat transfer within the hot gas path. In this context, the rotor hub side endwall region of the high pressure turbine depicts an object of interest as the near wall flow field may be dominated by rotating flow structures emerging from the disc space cavities. The validation of the applied numerical tools rely on experimental heat transfer setups reproducing such transient boundary conditions. This paper describes an experimental approach to quantify the heat transfer coefficient and the adiabatic wall temperature on the rotating endwall of a large scale test turbine. The wall heat flux distribution in a thin film isolator coated to a well conducting support structure is quantified for a series of quasi-isothermal boundary conditions. A high-resolution infrared camera is used to capture triggered thermograms of the rotating surface. Distributed thermocouples in the base body serve as reference points for camera calibration and to deduce the temperature distribution at the interface to the isolator. The calibration is in-situ and includes the pixel-wise quantification of uncertainties in the surface temperatures. An advanced linear fit approach is applied to derive the unknown adiabatic quantities and their uncertainties. For the examined operating point with a rim seal purge flow rate of 1% the random part of the relative measurement uncertainty is clearly below 10% for the heat transfer coefficient and below 5% for the adiabatic wall temperature. As the evaluation algorithm is designed to consider covariances between the thermocouple and infrared readings, the surface wall heat flux can be evaluated for every single infrared image.

Freie Schlagworte: infrared thermography, moving objects, axial turbine, heat transfer coefficient, film cooling effectiveness, linear regression, combined uncertainty
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-204680
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Gasturbinen, Luft- und Raumfahrtantriebe (GLR)
Hinterlegungsdatum: 09 Jan 2024 10:34
Letzte Änderung: 10 Jan 2024 08:13
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen