TU Darmstadt / ULB / TUbiblio

Molecular dynamics study of shock-induced deformation phenomena and spallation failure in Ni-based single crystal superalloys

Chen, Bin ; Li, Yunli ; Şopu, Daniel ; Eckert, Jürgen ; Wu, Wenping (2023)
Molecular dynamics study of shock-induced deformation phenomena and spallation failure in Ni-based single crystal superalloys.
In: International Journal of Plasticity, 162
doi: 10.1016/j.ijplas.2023.103539
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Shock-induced dynamic mechanical behavior and spallation failure of Ni-based single crystal superalloys are studied via non-equilibrium molecular dynamic simulations. The results show that the spallation failure of Ni-based single crystal superalloys exhibits two modes of classical spallation and micro-spallation. At low shock velocity, the deformation mechanism is dominated by slip and drag of dislocations. As the shock velocity increases, the atomic structure undergoes complex phase transitions from FCC to BCC or disordered structures, and the spallation strength gradually decreases. The decreasing tendency of the spallation strength corresponds to the characteristics of the deformation process. Moreover, the spallation strength and spallation threshold velocity drop significantly with increasing initial temperature, which is due to the softening of Ni-based single crystal superalloys at high temperatures. In addition, the plastic mechanism dominated by shear stress leads to void collapse along the vertical direction at lower shock velocities, while the internal jetting mechanism, controlled by normal stress, induces void collapse in the horizontal direction under higher shock velocities. The existence of voids significantly lowers the spallation strength, and the amplitude reduction of the strength is directly proportional to the radius of the voids.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Chen, Bin ; Li, Yunli ; Şopu, Daniel ; Eckert, Jürgen ; Wu, Wenping
Art des Eintrags: Bibliographie
Titel: Molecular dynamics study of shock-induced deformation phenomena and spallation failure in Ni-based single crystal superalloys
Sprache: Englisch
Publikationsjahr: 23 Januar 2023
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal of Plasticity
Jahrgang/Volume einer Zeitschrift: 162
DOI: 10.1016/j.ijplas.2023.103539
Kurzbeschreibung (Abstract):

Shock-induced dynamic mechanical behavior and spallation failure of Ni-based single crystal superalloys are studied via non-equilibrium molecular dynamic simulations. The results show that the spallation failure of Ni-based single crystal superalloys exhibits two modes of classical spallation and micro-spallation. At low shock velocity, the deformation mechanism is dominated by slip and drag of dislocations. As the shock velocity increases, the atomic structure undergoes complex phase transitions from FCC to BCC or disordered structures, and the spallation strength gradually decreases. The decreasing tendency of the spallation strength corresponds to the characteristics of the deformation process. Moreover, the spallation strength and spallation threshold velocity drop significantly with increasing initial temperature, which is due to the softening of Ni-based single crystal superalloys at high temperatures. In addition, the plastic mechanism dominated by shear stress leads to void collapse along the vertical direction at lower shock velocities, while the internal jetting mechanism, controlled by normal stress, induces void collapse in the horizontal direction under higher shock velocities. The existence of voids significantly lowers the spallation strength, and the amplitude reduction of the strength is directly proportional to the radius of the voids.

Freie Schlagworte: Ni-based single crystal superalloys, spallation mechanism, microstructural deformation, dynamic mechanical behavior, molecular dynamics simulation
Zusätzliche Informationen:

Artikel-ID: 103539

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
TU-Projekte: DFG|SO1518/1-1|Atomistische Modelli
Hinterlegungsdatum: 10 Jan 2024 06:54
Letzte Änderung: 10 Jan 2024 12:41
PPN: 514573740
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen