TU Darmstadt / ULB / TUbiblio

Inelastic finite deformation beam modeling, simulation, and validation of additively manufactured lattice structures

Weeger, Oliver ; Valizadeh, Iman ; Mistry, Yash ; Bhate, Dhruv (2024)
Inelastic finite deformation beam modeling, simulation, and validation of additively manufactured lattice structures.
In: Additive Manufacturing Letters, 2023, 4
doi: 10.26083/tuprints-00026473
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Lattice-type periodic metamaterials with beam-like struts have been extensively investigated in recent years thanks to the progress in additive manufacturing technologies. However, when lattice structures are subject to large deformations, computational simulation for design and optimization remains a major challenge due to complex nonlinear and inelastic effects, such as instabilities, contacts, rate-dependence, plasticity, or damage. In this contribution, we demonstrate for the first time the efficient and accurate computational simulation of beam lattices using a finite deformation 3D beam formulation with inelastic material behavior, instability analysis, and contacts. In particular, the constitutive model captures elasto-visco-plasticity with damage/softening from the Mullins effect. Thus, the formulation can be applied to the modeling of both stiffer metallic and more flexible polymeric materials. The approach is demonstrated and experimentally validated in application to additively manufactured lattice structures made from Polyamide 12 by laser sintering and from a highly viscous polymer by vat hotopolymerization. For compression tests executed until densification or with unloading and at different rates, the beam simulations are in very good agreement with experiments. These results strongly indicate that the consideration of all nonlinear and inelastic effects is crucial to accurately model the finite deformation behavior of lattice structures. It can be concluded that this can be effectively attained using inelastic beam models, which opens the perspective for simulation-based design and optimization of lattices for practical applications.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Weeger, Oliver ; Valizadeh, Iman ; Mistry, Yash ; Bhate, Dhruv
Art des Eintrags: Zweitveröffentlichung
Titel: Inelastic finite deformation beam modeling, simulation, and validation of additively manufactured lattice structures
Sprache: Englisch
Publikationsjahr: 8 Januar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Additive Manufacturing Letters
Jahrgang/Volume einer Zeitschrift: 4
Kollation: 9 Seiten
DOI: 10.26083/tuprints-00026473
URL / URN: https://tuprints.ulb.tu-darmstadt.de/26473
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Lattice-type periodic metamaterials with beam-like struts have been extensively investigated in recent years thanks to the progress in additive manufacturing technologies. However, when lattice structures are subject to large deformations, computational simulation for design and optimization remains a major challenge due to complex nonlinear and inelastic effects, such as instabilities, contacts, rate-dependence, plasticity, or damage. In this contribution, we demonstrate for the first time the efficient and accurate computational simulation of beam lattices using a finite deformation 3D beam formulation with inelastic material behavior, instability analysis, and contacts. In particular, the constitutive model captures elasto-visco-plasticity with damage/softening from the Mullins effect. Thus, the formulation can be applied to the modeling of both stiffer metallic and more flexible polymeric materials. The approach is demonstrated and experimentally validated in application to additively manufactured lattice structures made from Polyamide 12 by laser sintering and from a highly viscous polymer by vat hotopolymerization. For compression tests executed until densification or with unloading and at different rates, the beam simulations are in very good agreement with experiments. These results strongly indicate that the consideration of all nonlinear and inelastic effects is crucial to accurately model the finite deformation behavior of lattice structures. It can be concluded that this can be effectively attained using inelastic beam models, which opens the perspective for simulation-based design and optimization of lattices for practical applications.

Freie Schlagworte: Lattice structures, Nonlinear beam model, Elasto-visco-plasticity, Laser sintering, Vat photopolymerization
ID-Nummer: 100111
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-264735
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): Studienbereiche
16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Studienbereiche > Studienbereich Computational Engineering
Hinterlegungsdatum: 08 Jan 2024 10:54
Letzte Änderung: 09 Jan 2024 09:27
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen