TU Darmstadt / ULB / TUbiblio

Quantitative characterization of local thermal properties in thermoelectric ceramics using “jumping‐mode” scanning thermal microscopy

Alikin, Denis ; Zakharchuk, Kiryl ; Xie, Wenjie ; Romanyuk, Konstantin ; Pereira, Maria J. ; Arias‐Serrano, Blanca I. ; Weidenkaff, Anke ; Kholkin, Andrei ; Kovalevsky, Andrei V. ; Tselev, Alexander (2023)
Quantitative characterization of local thermal properties in thermoelectric ceramics using “jumping‐mode” scanning thermal microscopy.
In: Small Methods, 7 (4)
doi: 10.1002/smtd.202201516
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Thermoelectric conversion may take a significant share in future energy technologies. Oxide-based thermoelectric composite ceramics attract attention for promising routes for control of electrical and thermal conductivity for enhanced thermoelectric performance. However, the variability of the composite properties responsible for the thermoelectric performance, despite nominally identical preparation routes, is significant, and this cannot be explained without detailed studies of thermal transport at the local scale. Scanning thermal microscopy (SThM) is a scanning probe microscopy method providing access to local thermal properties of materials down to length scales below 100 nm. To date, realistic quantitative SThM is shown mostly for topographically very smooth materials. Here, methods for SThM imaging of bulk ceramic samples with relatively rough surfaces are demonstrated. "Jumping mode" SThM (JM-SThM), which serves to preserve the probe integrity while imaging rough surfaces, is developed and applied. Experiments with real thermoelectric ceramics show that the JM-SThM can be used for meaningful quantitative imaging. Quantitative imaging is performed with the help of calibrated finite-elements model of the SThM probe. The modeling reveals non-negligible effects associated with the distributed nature of the resistive SThM probes used; corrections need to be made depending on probe-sample contact thermal resistance and probe current frequency.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Alikin, Denis ; Zakharchuk, Kiryl ; Xie, Wenjie ; Romanyuk, Konstantin ; Pereira, Maria J. ; Arias‐Serrano, Blanca I. ; Weidenkaff, Anke ; Kholkin, Andrei ; Kovalevsky, Andrei V. ; Tselev, Alexander
Art des Eintrags: Bibliographie
Titel: Quantitative characterization of local thermal properties in thermoelectric ceramics using “jumping‐mode” scanning thermal microscopy
Sprache: Englisch
Publikationsjahr: April 2023
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Small Methods
Jahrgang/Volume einer Zeitschrift: 7
(Heft-)Nummer: 4
DOI: 10.1002/smtd.202201516
Kurzbeschreibung (Abstract):

Thermoelectric conversion may take a significant share in future energy technologies. Oxide-based thermoelectric composite ceramics attract attention for promising routes for control of electrical and thermal conductivity for enhanced thermoelectric performance. However, the variability of the composite properties responsible for the thermoelectric performance, despite nominally identical preparation routes, is significant, and this cannot be explained without detailed studies of thermal transport at the local scale. Scanning thermal microscopy (SThM) is a scanning probe microscopy method providing access to local thermal properties of materials down to length scales below 100 nm. To date, realistic quantitative SThM is shown mostly for topographically very smooth materials. Here, methods for SThM imaging of bulk ceramic samples with relatively rough surfaces are demonstrated. "Jumping mode" SThM (JM-SThM), which serves to preserve the probe integrity while imaging rough surfaces, is developed and applied. Experiments with real thermoelectric ceramics show that the JM-SThM can be used for meaningful quantitative imaging. Quantitative imaging is performed with the help of calibrated finite-elements model of the SThM probe. The modeling reveals non-negligible effects associated with the distributed nature of the resistive SThM probes used; corrections need to be made depending on probe-sample contact thermal resistance and probe current frequency.

Freie Schlagworte: thermal conductivity, quantitative imaging, ceramics, resistive probes, finite-elements modeling
Zusätzliche Informationen:

Artikel-ID: 2201516

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Werkstofftechnik und Ressourcenmanagement
Hinterlegungsdatum: 09 Jan 2024 08:00
Letzte Änderung: 09 Jan 2024 08:07
PPN: 514528419
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen