TU Darmstadt / ULB / TUbiblio

Magnetoelectric Tuning of Pinning‐Type Permanent Magnets through Atomic‐Scale Engineering of Grain Boundaries

Ye, Xinglong ; Yan, Fengkai ; Schäfer, Lukas ; Wang, Di ; Geßwein, Holger ; Wang, Wu ; Chellali, Mohammed Reda ; Stephenson, Leigh T. ; Skokov, Konstantin ; Gutfleisch, Oliver ; Raabe, Dierk ; Hahn, Horst ; Gault, Baptiste ; Kruk, Robert (2024)
Magnetoelectric Tuning of Pinning‐Type Permanent Magnets through Atomic‐Scale Engineering of Grain Boundaries.
In: Advanced Materials, 2021, 33 (5)
doi: 10.26083/tuprints-00017824
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Pinning‐type magnets with high coercivity at high temperatures are at the core of thriving clean‐energy technologies. Among these, Sm₂Co₁₇‐based magnets are excellent candidates owing to their high‐temperature stability. However, despite intensive efforts to optimize the intragranular microstructure, the coercivity currently only reaches 20–30% of the theoretical limits. Here, the roles of the grain‐interior nanostructure and the grain boundaries in controlling coercivity are disentangled by an emerging magnetoelectric approach. Through hydrogen charging/discharging by applying voltages of only ≈1 V, the coercivity is reversibly tuned by an unprecedented value of ≈1.3 T. In situ magneto‐structural characterization and atomic‐scale tracking of hydrogen atoms reveal that the segregation of hydrogen atoms at the grain boundaries, rather than the change of the crystal structure, dominates the reversible and substantial change of coercivity. Hydrogen reduces the local magnetocrystalline anisotropy and facilitates the magnetization reversal starting from the grain boundaries. This study opens a way to achieve the giant magnetoelectric effect in permanent magnets by engineering grain boundaries with hydrogen atoms. Furthermore, it reveals the so far neglected critical role of grain boundaries in the conventional magnetization‐switching paradigm of pinning‐type magnets, suggesting a critical reconsideration of engineering strategies to overcome the coercivity limits.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Ye, Xinglong ; Yan, Fengkai ; Schäfer, Lukas ; Wang, Di ; Geßwein, Holger ; Wang, Wu ; Chellali, Mohammed Reda ; Stephenson, Leigh T. ; Skokov, Konstantin ; Gutfleisch, Oliver ; Raabe, Dierk ; Hahn, Horst ; Gault, Baptiste ; Kruk, Robert
Art des Eintrags: Zweitveröffentlichung
Titel: Magnetoelectric Tuning of Pinning‐Type Permanent Magnets through Atomic‐Scale Engineering of Grain Boundaries
Sprache: Englisch
Publikationsjahr: 5 Januar 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Materials
Jahrgang/Volume einer Zeitschrift: 33
(Heft-)Nummer: 5
Kollation: 7 Seiten
DOI: 10.26083/tuprints-00017824
URL / URN: https://tuprints.ulb.tu-darmstadt.de/17824
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Pinning‐type magnets with high coercivity at high temperatures are at the core of thriving clean‐energy technologies. Among these, Sm₂Co₁₇‐based magnets are excellent candidates owing to their high‐temperature stability. However, despite intensive efforts to optimize the intragranular microstructure, the coercivity currently only reaches 20–30% of the theoretical limits. Here, the roles of the grain‐interior nanostructure and the grain boundaries in controlling coercivity are disentangled by an emerging magnetoelectric approach. Through hydrogen charging/discharging by applying voltages of only ≈1 V, the coercivity is reversibly tuned by an unprecedented value of ≈1.3 T. In situ magneto‐structural characterization and atomic‐scale tracking of hydrogen atoms reveal that the segregation of hydrogen atoms at the grain boundaries, rather than the change of the crystal structure, dominates the reversible and substantial change of coercivity. Hydrogen reduces the local magnetocrystalline anisotropy and facilitates the magnetization reversal starting from the grain boundaries. This study opens a way to achieve the giant magnetoelectric effect in permanent magnets by engineering grain boundaries with hydrogen atoms. Furthermore, it reveals the so far neglected critical role of grain boundaries in the conventional magnetization‐switching paradigm of pinning‐type magnets, suggesting a critical reconsideration of engineering strategies to overcome the coercivity limits.

Freie Schlagworte: grain boundaries, hydrogen, magnetoelectric coupling, permanent magnets
ID-Nummer: 2006853
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-178246
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
Hinterlegungsdatum: 05 Jan 2024 13:40
Letzte Änderung: 08 Jan 2024 07:38
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen