Ye, Xinglong ; Yan, Fengkai ; Schäfer, Lukas ; Wang, Di ; Geßwein, Holger ; Wang, Wu ; Chellali, Mohammed Reda ; Stephenson, Leigh T. ; Skokov, Konstantin ; Gutfleisch, Oliver ; Raabe, Dierk ; Hahn, Horst ; Gault, Baptiste ; Kruk, Robert (2024)
Magnetoelectric Tuning of Pinning‐Type Permanent Magnets through Atomic‐Scale Engineering of Grain Boundaries.
In: Advanced Materials, 2021, 33 (5)
doi: 10.26083/tuprints-00017824
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Pinning‐type magnets with high coercivity at high temperatures are at the core of thriving clean‐energy technologies. Among these, Sm₂Co₁₇‐based magnets are excellent candidates owing to their high‐temperature stability. However, despite intensive efforts to optimize the intragranular microstructure, the coercivity currently only reaches 20–30% of the theoretical limits. Here, the roles of the grain‐interior nanostructure and the grain boundaries in controlling coercivity are disentangled by an emerging magnetoelectric approach. Through hydrogen charging/discharging by applying voltages of only ≈1 V, the coercivity is reversibly tuned by an unprecedented value of ≈1.3 T. In situ magneto‐structural characterization and atomic‐scale tracking of hydrogen atoms reveal that the segregation of hydrogen atoms at the grain boundaries, rather than the change of the crystal structure, dominates the reversible and substantial change of coercivity. Hydrogen reduces the local magnetocrystalline anisotropy and facilitates the magnetization reversal starting from the grain boundaries. This study opens a way to achieve the giant magnetoelectric effect in permanent magnets by engineering grain boundaries with hydrogen atoms. Furthermore, it reveals the so far neglected critical role of grain boundaries in the conventional magnetization‐switching paradigm of pinning‐type magnets, suggesting a critical reconsideration of engineering strategies to overcome the coercivity limits.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Ye, Xinglong ; Yan, Fengkai ; Schäfer, Lukas ; Wang, Di ; Geßwein, Holger ; Wang, Wu ; Chellali, Mohammed Reda ; Stephenson, Leigh T. ; Skokov, Konstantin ; Gutfleisch, Oliver ; Raabe, Dierk ; Hahn, Horst ; Gault, Baptiste ; Kruk, Robert |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Magnetoelectric Tuning of Pinning‐Type Permanent Magnets through Atomic‐Scale Engineering of Grain Boundaries |
Sprache: | Englisch |
Publikationsjahr: | 5 Januar 2024 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2021 |
Ort der Erstveröffentlichung: | Weinheim |
Verlag: | Wiley-VCH |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Advanced Materials |
Jahrgang/Volume einer Zeitschrift: | 33 |
(Heft-)Nummer: | 5 |
Kollation: | 7 Seiten |
DOI: | 10.26083/tuprints-00017824 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/17824 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | Pinning‐type magnets with high coercivity at high temperatures are at the core of thriving clean‐energy technologies. Among these, Sm₂Co₁₇‐based magnets are excellent candidates owing to their high‐temperature stability. However, despite intensive efforts to optimize the intragranular microstructure, the coercivity currently only reaches 20–30% of the theoretical limits. Here, the roles of the grain‐interior nanostructure and the grain boundaries in controlling coercivity are disentangled by an emerging magnetoelectric approach. Through hydrogen charging/discharging by applying voltages of only ≈1 V, the coercivity is reversibly tuned by an unprecedented value of ≈1.3 T. In situ magneto‐structural characterization and atomic‐scale tracking of hydrogen atoms reveal that the segregation of hydrogen atoms at the grain boundaries, rather than the change of the crystal structure, dominates the reversible and substantial change of coercivity. Hydrogen reduces the local magnetocrystalline anisotropy and facilitates the magnetization reversal starting from the grain boundaries. This study opens a way to achieve the giant magnetoelectric effect in permanent magnets by engineering grain boundaries with hydrogen atoms. Furthermore, it reveals the so far neglected critical role of grain boundaries in the conventional magnetization‐switching paradigm of pinning‐type magnets, suggesting a critical reconsideration of engineering strategies to overcome the coercivity limits. |
Freie Schlagworte: | grain boundaries, hydrogen, magnetoelectric coupling, permanent magnets |
ID-Nummer: | 2006853 |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-178246 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 540 Chemie 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien |
Hinterlegungsdatum: | 05 Jan 2024 13:40 |
Letzte Änderung: | 08 Jan 2024 07:38 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Magnetoelectric Tuning of Pinning‐Type Permanent Magnets through Atomic‐Scale Engineering of Grain Boundaries. (deposited 05 Jan 2024 13:40) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |