TU Darmstadt / ULB / TUbiblio

SEER : A Knapsack approach to Exemplar Selection for In-Context HybridQA

Tonglet, Jonathan ; Reusens, Manon ; Borchert, Philipp ; Baesens, Bart (2023)
SEER : A Knapsack approach to Exemplar Selection for In-Context HybridQA.
2023 Conference on Empirical Methods in Natural Language Processing. Singapore (06.12.2023-10.12.2023)
doi: 10.18653/v1/2023.emnlp-main.837
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Question answering over hybrid contexts is a complex task, which requires the combination of information extracted from unstructured texts and structured tables in various ways. Recently, In-Context Learning demonstrated significant performance advances for reasoning tasks. In this paradigm, a large language model performs predictions based on a small set of supporting exemplars. The performance of In-Context Learning depends heavily on the selection procedure of the supporting exemplars, particularly in the case of HybridQA, where considering the diversity of reasoning chains and the large size of the hybrid contexts becomes crucial. In this work, we present Selection of ExEmplars for hybrid Reasoning (SEER), a novel method for selecting a set of exemplars that is both representative and diverse. The key novelty of SEER is that it formulates exemplar selection as a Knapsack Integer Linear Program. The Knapsack framework provides the flexibility to incorporate diversity constraints that prioritize exemplars with desirable attributes, and capacity constraints that ensure that the prompt size respects the provided capacity budgets. The effectiveness of SEER is demonstrated on FinQA and TAT-QA, two real-world benchmarks for HybridQA, where it outperforms previous exemplar selection methods.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Tonglet, Jonathan ; Reusens, Manon ; Borchert, Philipp ; Baesens, Bart
Art des Eintrags: Bibliographie
Titel: SEER : A Knapsack approach to Exemplar Selection for In-Context HybridQA
Sprache: Englisch
Publikationsjahr: Dezember 2023
Ort: Singapore
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Veranstaltungstitel: 2023 Conference on Empirical Methods in Natural Language Processing
Veranstaltungsort: Singapore
Veranstaltungsdatum: 06.12.2023-10.12.2023
DOI: 10.18653/v1/2023.emnlp-main.837
URL / URN: https://aclanthology.org/2023.emnlp-main.837
Kurzbeschreibung (Abstract):

Question answering over hybrid contexts is a complex task, which requires the combination of information extracted from unstructured texts and structured tables in various ways. Recently, In-Context Learning demonstrated significant performance advances for reasoning tasks. In this paradigm, a large language model performs predictions based on a small set of supporting exemplars. The performance of In-Context Learning depends heavily on the selection procedure of the supporting exemplars, particularly in the case of HybridQA, where considering the diversity of reasoning chains and the large size of the hybrid contexts becomes crucial. In this work, we present Selection of ExEmplars for hybrid Reasoning (SEER), a novel method for selecting a set of exemplars that is both representative and diverse. The key novelty of SEER is that it formulates exemplar selection as a Knapsack Integer Linear Program. The Knapsack framework provides the flexibility to incorporate diversity constraints that prioritize exemplars with desirable attributes, and capacity constraints that ensure that the prompt size respects the provided capacity budgets. The effectiveness of SEER is demonstrated on FinQA and TAT-QA, two real-world benchmarks for HybridQA, where it outperforms previous exemplar selection methods.

Freie Schlagworte: UKP_p_LOEWE_Spitzenprofessur, UKP_p_emergencity, emergenCITY
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 18 Jan 2024 13:50
Letzte Änderung: 21 Mär 2024 12:55
PPN: 516464655
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen