TU Darmstadt / ULB / TUbiblio

A Diachronic Analysis of Paradigm Shifts in NLP Research: When, How, and Why?

Pramanick, Aniket ; Hou, Yufang ; Mohammad, Saif ; Gurevych, Iryna (2023)
A Diachronic Analysis of Paradigm Shifts in NLP Research: When, How, and Why?
2023 Conference on Empirical Methods in Natural Language Processing. Singapore (06.12.2023-10.12.2023)
doi: 10.18653/v1/2023.emnlp-main.142
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Understanding the fundamental concepts and trends in a scientific field is crucial for keeping abreast of its continuous advancement. In this study, we propose a systematic framework for analyzing the evolution of research topics in a scientific field using causal discovery and inference techniques. We define three variables to encompass diverse facets of the evolution of research topics within NLP and utilize a causal discovery algorithm to unveil the causal connections among these variables using observational data. Subsequently, we leverage this structure to measure the intensity of these relationships. By conducting extensive experiments on the ACL Anthology corpus, we demonstrate that our framework effectively uncovers evolutionary trends and the underlying causes for a wide range of NLP research topics. Specifically, we show that tasks and methods are primary drivers of research in NLP, with datasets following, while metrics have minimal impact.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Pramanick, Aniket ; Hou, Yufang ; Mohammad, Saif ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: A Diachronic Analysis of Paradigm Shifts in NLP Research: When, How, and Why?
Sprache: Englisch
Publikationsjahr: Dezember 2023
Ort: Singapore
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Veranstaltungstitel: 2023 Conference on Empirical Methods in Natural Language Processing
Veranstaltungsort: Singapore
Veranstaltungsdatum: 06.12.2023-10.12.2023
DOI: 10.18653/v1/2023.emnlp-main.142
URL / URN: https://aclanthology.org/2023.emnlp-main.142/
Kurzbeschreibung (Abstract):

Understanding the fundamental concepts and trends in a scientific field is crucial for keeping abreast of its continuous advancement. In this study, we propose a systematic framework for analyzing the evolution of research topics in a scientific field using causal discovery and inference techniques. We define three variables to encompass diverse facets of the evolution of research topics within NLP and utilize a causal discovery algorithm to unveil the causal connections among these variables using observational data. Subsequently, we leverage this structure to measure the intensity of these relationships. By conducting extensive experiments on the ACL Anthology corpus, we demonstrate that our framework effectively uncovers evolutionary trends and the underlying causes for a wide range of NLP research topics. Specifically, we show that tasks and methods are primary drivers of research in NLP, with datasets following, while metrics have minimal impact.

Freie Schlagworte: UKP_p_KRITIS
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 18 Jan 2024 13:47
Letzte Änderung: 19 Mär 2024 11:36
PPN: 516393057
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen