TU Darmstadt / ULB / TUbiblio

Exploring Jiu-Jitsu Argumentation for Writing Peer Review Rebuttals

Purkayastha, Sukannya ; Lauscher, Anne ; Gurevych, Iryna (2023)
Exploring Jiu-Jitsu Argumentation for Writing Peer Review Rebuttals.
2023 Conference on Empirical Methods in Natural Language Processing. Singapore (06.12.2023-10.12.2023)
doi: 10.18653/v1/2023.emnlp-main.894
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In many domains of argumentation, people’s arguments are driven by so-called attitude roots, i.e., underlying beliefs and world views, and their corresponding attitude themes. Given the strength of these latent drivers of arguments, recent work in psychology suggests that instead of directly countering surface-level reasoning (e.g., falsifying the premises), one should follow an argumentation style inspired by the Jiu-Jitsu “soft” combat system: first, identify an arguer’s attitude roots and themes, and then choose a prototypical rebuttal that is aligned with those drivers instead of trying to invalidate those. In this work, we are the first to explore Jiu-Jitsu argumentation for peer reviews by proposing the novel task of attitude and theme-guided rebuttal generation. To this end, we enrich an existing dataset for discourse structure in peer reviews with attitude roots, attitude themes, and canonical rebuttals. To facilitate this process, we recast established annotation concepts from the domain of peer reviews (e.g., aspects a review sentence is relating to) and train domain-specific models. We then propose strong rebuttal generation strategies, which we benchmark on our novel dataset for the task of end-to-end attitude and theme-guided rebuttal generation and two subtasks.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Purkayastha, Sukannya ; Lauscher, Anne ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Exploring Jiu-Jitsu Argumentation for Writing Peer Review Rebuttals
Sprache: Englisch
Publikationsjahr: Dezember 2023
Ort: Singapore
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Veranstaltungstitel: 2023 Conference on Empirical Methods in Natural Language Processing
Veranstaltungsort: Singapore
Veranstaltungsdatum: 06.12.2023-10.12.2023
DOI: 10.18653/v1/2023.emnlp-main.894
URL / URN: https://aclanthology.org/2023.emnlp-main.894/
Kurzbeschreibung (Abstract):

In many domains of argumentation, people’s arguments are driven by so-called attitude roots, i.e., underlying beliefs and world views, and their corresponding attitude themes. Given the strength of these latent drivers of arguments, recent work in psychology suggests that instead of directly countering surface-level reasoning (e.g., falsifying the premises), one should follow an argumentation style inspired by the Jiu-Jitsu “soft” combat system: first, identify an arguer’s attitude roots and themes, and then choose a prototypical rebuttal that is aligned with those drivers instead of trying to invalidate those. In this work, we are the first to explore Jiu-Jitsu argumentation for peer reviews by proposing the novel task of attitude and theme-guided rebuttal generation. To this end, we enrich an existing dataset for discourse structure in peer reviews with attitude roots, attitude themes, and canonical rebuttals. To facilitate this process, we recast established annotation concepts from the domain of peer reviews (e.g., aspects a review sentence is relating to) and train domain-specific models. We then propose strong rebuttal generation strategies, which we benchmark on our novel dataset for the task of end-to-end attitude and theme-guided rebuttal generation and two subtasks.

Freie Schlagworte: UKP_p_KRITIS,UKP_p_InterText
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 18 Jan 2024 13:46
Letzte Änderung: 19 Mär 2024 07:52
PPN: 516382535
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen