TU Darmstadt / ULB / TUbiblio

Semantic Similarity Models for Depression Severity Estimation

Pérez, Anxo ; Warikoo, Neha ; Wang, Kexin ; Parapar, Javier ; Gurevych, Iryna (2023)
Semantic Similarity Models for Depression Severity Estimation.
2023 Conference on Empirical Methods in Natural Language Processing. Singapore (06.12.2023-10.12.2023)
doi: 10.18653/v1/2023.emnlp-main.1000
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Depressive disorders constitute a severe public health issue worldwide. However, public health systems have limited capacity for case detection and diagnosis. In this regard, the widespread use of social media has opened up a way to access public information on a large scale. Computational methods can serve as support tools for rapid screening by exploiting this user-generated social media content. This paper presents an efficient semantic pipeline to study depression severity in individuals based on their social media writings. We select test user sentences for producing semantic rankings over an index of representative training sentences corresponding to depressive symptoms and severity levels. Then, we use the sentences from those results as evidence for predicting symptoms severity. For that, we explore different aggregation methods to answer one of four Beck Depression Inventory (BDI-II) options per symptom. We evaluate our methods on two Reddit-based benchmarks, achieving improvement over state of the art in terms of measuring depression level.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Pérez, Anxo ; Warikoo, Neha ; Wang, Kexin ; Parapar, Javier ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Semantic Similarity Models for Depression Severity Estimation
Sprache: Englisch
Publikationsjahr: Dezember 2023
Ort: Singapore
Verlag: ACL
Buchtitel: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Veranstaltungstitel: 2023 Conference on Empirical Methods in Natural Language Processing
Veranstaltungsort: Singapore
Veranstaltungsdatum: 06.12.2023-10.12.2023
DOI: 10.18653/v1/2023.emnlp-main.1000
URL / URN: https://aclanthology.org/2023.emnlp-main.1000/
Kurzbeschreibung (Abstract):

Depressive disorders constitute a severe public health issue worldwide. However, public health systems have limited capacity for case detection and diagnosis. In this regard, the widespread use of social media has opened up a way to access public information on a large scale. Computational methods can serve as support tools for rapid screening by exploiting this user-generated social media content. This paper presents an efficient semantic pipeline to study depression severity in individuals based on their social media writings. We select test user sentences for producing semantic rankings over an index of representative training sentences corresponding to depressive symptoms and severity levels. Then, we use the sentences from those results as evidence for predicting symptoms severity. For that, we explore different aggregation methods to answer one of four Beck Depression Inventory (BDI-II) options per symptom. We evaluate our methods on two Reddit-based benchmarks, achieving improvement over state of the art in terms of measuring depression level.

Freie Schlagworte: UKP_p_LOEWE_Spitzenprofessur
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 18 Jan 2024 13:42
Letzte Änderung: 15 Mär 2024 10:37
PPN: 516304933
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen