TU Darmstadt / ULB / TUbiblio

Learning From Free-Text Human Feedback - Collect New Datasets Or Extend Existing Ones?

Petrak, Dominic ; Moosavi, Nafise Sadat ; Tian, Ye ; Rozanov, Nikolai ; Gurevych, Iryna (2023)
Learning From Free-Text Human Feedback - Collect New Datasets Or Extend Existing Ones?
2023 Conference on Empirical Methods in Natural Language Processing. Singapore (06.12.2023-10.12.2023)
doi: 10.18653/v1/2023.emnlp-main.1011
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Continuous learning from free-text human feedback, such as error corrections, new knowledge, or alternative responses, is essential for today’s chatbots and virtual assistants to stay up-to-date, engaging, and socially acceptable. However, for research on methods for learning from such data, annotated data is scarce. To address this, we examine the error and user response types of six popular dialogue datasets from various types, including MultiWoZ, PersonaChat, Wizards-of-Wikipedia, and others, to assess their extendibility with the needed annotations. For this corpus study, we manually annotate a subset of each dataset with error and user response types using an improved version of the Integrated Error Taxonomy and a newly proposed user response type taxonomy. We provide the resulting dataset (EURTAD) to the community. Our findings provide new insights into dataset composition, including error types, user response types, and the relations between them.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Petrak, Dominic ; Moosavi, Nafise Sadat ; Tian, Ye ; Rozanov, Nikolai ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Learning From Free-Text Human Feedback - Collect New Datasets Or Extend Existing Ones?
Sprache: Englisch
Publikationsjahr: Dezember 2023
Verlag: ACL
Buchtitel: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Veranstaltungstitel: 2023 Conference on Empirical Methods in Natural Language Processing
Veranstaltungsort: Singapore
Veranstaltungsdatum: 06.12.2023-10.12.2023
DOI: 10.18653/v1/2023.emnlp-main.1011
URL / URN: https://aclanthology.org/2023.emnlp-main.1011/
Kurzbeschreibung (Abstract):

Continuous learning from free-text human feedback, such as error corrections, new knowledge, or alternative responses, is essential for today’s chatbots and virtual assistants to stay up-to-date, engaging, and socially acceptable. However, for research on methods for learning from such data, annotated data is scarce. To address this, we examine the error and user response types of six popular dialogue datasets from various types, including MultiWoZ, PersonaChat, Wizards-of-Wikipedia, and others, to assess their extendibility with the needed annotations. For this corpus study, we manually annotate a subset of each dataset with error and user response types using an improved version of the Integrated Error Taxonomy and a newly proposed user response type taxonomy. We provide the resulting dataset (EURTAD) to the community. Our findings provide new insights into dataset composition, including error types, user response types, and the relations between them.

Freie Schlagworte: UKP_p_SERMAS,UKP_p_LOEWE Spitzenprofessur
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 18 Jan 2024 13:41
Letzte Änderung: 07 Mär 2024 12:17
PPN: 516071459
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen