TU Darmstadt / ULB / TUbiblio

Grain size and coercivity tuning in Nd2Fe14B-based magnets prepared by high pressure hydrogen milling

Dirba, I. ; Aravindhan, A. ; Muneeb, M. ; Gutfleisch, O. (2023)
Grain size and coercivity tuning in Nd2Fe14B-based magnets prepared by high pressure hydrogen milling.
In: Journal of Magnetism and Magnetic Materials, 582
doi: 10.1016/j.jmmm.2023.171018
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Nd2Fe14B-based permanent magnets play important role in the emerging green energy technologies due to their superb energy product (BH)max. High coercivity at elevated operating temperatures is crucial for device performance and as an extrinsic property it is largely determined by the microstructure of the magnet. In this work, we use high pressure hydrogen milling to reduce the average grain size in Nd2Fe14B powders towards the critical single domain regime to study the influence on the resultant coercivity. In addition, Nd content has been varied in a broad range to investigate how it affects the coercivity. Milling in 100 bar hydrogen enables complete decomposition of the Nd2Fe14B phase into α-Fe, NdH2 and Fe2B at nominally room temperature. A subsequent hydrogen desorption heat treatment leads to the recombination to the parent phase, now with nearly two orders of magnitude reduction in the grain size. The results show that indeed Hc peaks around the critical single domain grain size of ≈200 nm of Nd2Fe14B. Higher contents of Nd-rich grain boundary phase lead to a continuous increase in coercivity up to μ0Hc = 1.5 T, likely due to the suppression of long-range magnetostatic interactions between the nanocrystalline Nd2Fe14B grains.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Dirba, I. ; Aravindhan, A. ; Muneeb, M. ; Gutfleisch, O.
Art des Eintrags: Bibliographie
Titel: Grain size and coercivity tuning in Nd2Fe14B-based magnets prepared by high pressure hydrogen milling
Sprache: Englisch
Publikationsjahr: 15 September 2023
Ort: Amsterdam
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Magnetism and Magnetic Materials
Jahrgang/Volume einer Zeitschrift: 582
DOI: 10.1016/j.jmmm.2023.171018
URL / URN: https://www.sciencedirect.com/science/article/abs/pii/S03048...
Kurzbeschreibung (Abstract):

Nd2Fe14B-based permanent magnets play important role in the emerging green energy technologies due to their superb energy product (BH)max. High coercivity at elevated operating temperatures is crucial for device performance and as an extrinsic property it is largely determined by the microstructure of the magnet. In this work, we use high pressure hydrogen milling to reduce the average grain size in Nd2Fe14B powders towards the critical single domain regime to study the influence on the resultant coercivity. In addition, Nd content has been varied in a broad range to investigate how it affects the coercivity. Milling in 100 bar hydrogen enables complete decomposition of the Nd2Fe14B phase into α-Fe, NdH2 and Fe2B at nominally room temperature. A subsequent hydrogen desorption heat treatment leads to the recombination to the parent phase, now with nearly two orders of magnitude reduction in the grain size. The results show that indeed Hc peaks around the critical single domain grain size of ≈200 nm of Nd2Fe14B. Higher contents of Nd-rich grain boundary phase lead to a continuous increase in coercivity up to μ0Hc = 1.5 T, likely due to the suppression of long-range magnetostatic interactions between the nanocrystalline Nd2Fe14B grains.

Zusätzliche Informationen:

Artikel-ID: 171018

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
Hinterlegungsdatum: 22 Dez 2023 10:08
Letzte Änderung: 22 Dez 2023 10:08
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen