TU Darmstadt / ULB / TUbiblio

A self-supervised learning approach for multivariate statistical in-process control in discrete manufacturing processes

Biegel, Tobias (2023)
A self-supervised learning approach for multivariate statistical in-process control in discrete manufacturing processes.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00026455
Dissertation, Erstveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

Monitoring discrete manufacturing processes to reliably detect anomalies, is of fundamental relevance to reduce unplanned downtimes and ultimately gain a competitive advantage. Multivariate Statistical In-Process Control (MSPC) represents one of the main areas of research that center around the detection of anomalies in process data and, as such, is heavily influenced by the developments of general Anomaly Detection (AD) research. Recent findings from various domains demonstrate that the incorporation of Self-Supervised Learning (SSL) into AD methods leads to unprecedented performance levels and is regarded as a major milestone in the AD literature. However, while these findings suggest that the incorporation of SSL might be beneficial for MSPC in discrete manufacturing, there is currently no research that incorporates SSL into MSPC for discrete manufacturing processes. The objective of this thesis is to close this gap and encompasses the development of an SSL approach for MSPC in discrete manufacturing processes. This approach is referred to as Self-Supervised Multivariate Statistical In-Process Control (SSMSPC). SSMSPC consists of three components: (1) Location + Transformation prediction pretext task, (2) AD downstream task, and (3) control chart extension. The objective of the Location + Transformation prediction pretext task is to classify the augmentation Tᵢ and the window Wⱼ based on a time series sample that is artificially augmented by one of k augmentation functions in one of p windows. In the AD downstream task, the learned representations from the pretext task are used to compute the anomaly score, which corresponds to the Hotelling’s T² statistic. The control limits of the control chart are determined with the help of a Kernel Density Estimation-based threshold selection scheme. The control chart extension provides an additional view to the conventional control chart, in which the anomalous regions in the process data are highlighted. The developed approach is validated both from a performance and a usability perspective. In terms of performance, SSMSPC is benchmarked against state-of-the-art shallow, deep, and self-supervised AD methods using the Bosch CNC milling dataset and the Center for Industrial Productivity Discrete Manufacturing Dataset (CiP-DMD). Both datasets represent real-world CNC milling processes in which high-frequency process data are collected. SSMSPC is shown to outperform leading state-of-the-art baselines on both datasets, achieving the highest overall score in terms of area under the receiver operating characteristic curve. The usability of SSMSPC is evaluated in the context of a usability study with human machine operators. In this study, the CNC milling process of the CiP-DMD is monitored with a deployed instance of SSMSPC and univariate post-process Statistical Process Control (SPC), which represents the accepted industry standard in discrete manufacturing. The usability is evaluated with the help of monitoring protocols as an objective evaluation measure and the System Usability Scale as a subjective evaluation measure. It is shown that the outstanding detection and localization capabilities provided by SSMSPC are not yet sufficient to effectively support the root-cause analysis. Instead, the findings of the usability study suggest to combine the control chart extension of SSMSPC with the insights obtained from a quality control step of the manufactured part to exceed the usability of univarate post-process SPC, both from an objective and subjective point of view.

Typ des Eintrags: Dissertation
Erschienen: 2023
Autor(en): Biegel, Tobias
Art des Eintrags: Erstveröffentlichung
Titel: A self-supervised learning approach for multivariate statistical in-process control in discrete manufacturing processes
Sprache: Englisch
Referenten: Metternich, Prof. Dr. Joachim ; Klingauf, Prof. Dr. Uwe
Publikationsjahr: 20 Dezember 2023
Ort: Darmstadt
Kollation: xxi, 154 Seiten
Datum der mündlichen Prüfung: 13 Dezember 2023
DOI: 10.26083/tuprints-00026455
URL / URN: https://tuprints.ulb.tu-darmstadt.de/26455
Kurzbeschreibung (Abstract):

Monitoring discrete manufacturing processes to reliably detect anomalies, is of fundamental relevance to reduce unplanned downtimes and ultimately gain a competitive advantage. Multivariate Statistical In-Process Control (MSPC) represents one of the main areas of research that center around the detection of anomalies in process data and, as such, is heavily influenced by the developments of general Anomaly Detection (AD) research. Recent findings from various domains demonstrate that the incorporation of Self-Supervised Learning (SSL) into AD methods leads to unprecedented performance levels and is regarded as a major milestone in the AD literature. However, while these findings suggest that the incorporation of SSL might be beneficial for MSPC in discrete manufacturing, there is currently no research that incorporates SSL into MSPC for discrete manufacturing processes. The objective of this thesis is to close this gap and encompasses the development of an SSL approach for MSPC in discrete manufacturing processes. This approach is referred to as Self-Supervised Multivariate Statistical In-Process Control (SSMSPC). SSMSPC consists of three components: (1) Location + Transformation prediction pretext task, (2) AD downstream task, and (3) control chart extension. The objective of the Location + Transformation prediction pretext task is to classify the augmentation Tᵢ and the window Wⱼ based on a time series sample that is artificially augmented by one of k augmentation functions in one of p windows. In the AD downstream task, the learned representations from the pretext task are used to compute the anomaly score, which corresponds to the Hotelling’s T² statistic. The control limits of the control chart are determined with the help of a Kernel Density Estimation-based threshold selection scheme. The control chart extension provides an additional view to the conventional control chart, in which the anomalous regions in the process data are highlighted. The developed approach is validated both from a performance and a usability perspective. In terms of performance, SSMSPC is benchmarked against state-of-the-art shallow, deep, and self-supervised AD methods using the Bosch CNC milling dataset and the Center for Industrial Productivity Discrete Manufacturing Dataset (CiP-DMD). Both datasets represent real-world CNC milling processes in which high-frequency process data are collected. SSMSPC is shown to outperform leading state-of-the-art baselines on both datasets, achieving the highest overall score in terms of area under the receiver operating characteristic curve. The usability of SSMSPC is evaluated in the context of a usability study with human machine operators. In this study, the CNC milling process of the CiP-DMD is monitored with a deployed instance of SSMSPC and univariate post-process Statistical Process Control (SPC), which represents the accepted industry standard in discrete manufacturing. The usability is evaluated with the help of monitoring protocols as an objective evaluation measure and the System Usability Scale as a subjective evaluation measure. It is shown that the outstanding detection and localization capabilities provided by SSMSPC are not yet sufficient to effectively support the root-cause analysis. Instead, the findings of the usability study suggest to combine the control chart extension of SSMSPC with the insights obtained from a quality control step of the manufactured part to exceed the usability of univarate post-process SPC, both from an objective and subjective point of view.

Alternatives oder übersetztes Abstract:
Alternatives AbstractSprache

Die Überwachung diskreter Fertigungsprozesse zur zuverlässigen Detektion von Anomalien ist von zentraler Bedeutung, um ungeplante Ausfallzeiten zu reduzieren und letztendlich einen Wettbewerbsvorteil zu erzielen. Multivariate statistische In-Prozess-Kontrolle (MSPC) ist eines der Hauptforschungsgebiete, das sich mit der Erkennung von Anomalien in Prozessdaten befasst und als solches stark von den Entwicklungen in der allgemeinen Anomaly Detection (AD) Forschung beeinflusst wird. Jüngste Erkenntnisse aus verschiedenen Bereichen zeigen, dass der Einsatz von Self-Supervised Learning (SSL) in AD-Methoden zu einem ungeahnten Leistungsniveau führt, was als wichtiger Meilenstein in der AD-Literatur angesehen wird. Obwohl diese Ergebnisse darauf hindeuten, dass der der Einsatz von SSL für die MSPC in der diskreten Fertigung von Vorteil sein könnte, gibt es derzeit keine Arbeiten, die SSL in die MSPC für diskrete Fertigungsprozesse einbeziehen. Die vorliegende Dissertation hat das Ziel, diese Lücke zu schließen und umfasst die Entwicklung eines SSL-Ansatzes für MSPC in diskreten Fertigungsprozessen. Dieser Ansatz wird als Self-Supervised Multivariate Statistical In-Process Control (SSMSPC) bezeichnet. SSMSPC besteht aus drei Komponenten: (1) Location + Transformation Prediction Pretext Task, (2) AD Downstream Task, und (3) Regelkartenerweiterung. Das Ziel der Location + Transformation Prediction Pretext Task ist die Klassifizierung der Augmentation Tᵢ und des Fensters Wⱼ basierend auf einer Zeitreihenprobe, die durch eine von k Augmentationsfunktionen in einem von p Fenstern augmentiert wird. In der AD Downstream Task werden die gelernten Repräsentationen aus der Pretext Task verwendet, um den Anomalie-Score zu berechnen, der der Hotelling’s T² Statistik entspricht. Die Kontrollgrenzen der Regelkarte werden mit Hilfe der Kerndichteschätzung bestimmt. Die Regelkartenerweiterung bietet eine zusätzliche Ansicht zur Regelkarte, in der die anomalen Bereiche in den Prozessdaten hervorgehoben werden. Der entwickelte Ansatz wird aus Performance und Usability Perspektive validiert. In Bezug auf die Performance wird SSMSPC mit dem Bosch CNC-Fräsdatensatz und dem Center for Industrial Productivity Discrete Manufacturing Dataset (CiP-DMD) mit State-of-the-Art shallow, deep und selfsupervised AD-Methoden verglichen. Beide Datensätze repräsentieren reale CNC-Fräsprozesse, bei denen hochfrequente Prozessdaten gesammelt werden. SSMSPC übertrifft in beiden Datensätzen die führenden State-of-the-Art-Baselines und erreicht den höchsten Score in Bezug auf die Fläche unter der Receiver Operating Characteristic Kurve. Die Usability von SSMSPC wird im Rahmen einer Usability-Studie mit Maschinenbedienern bewertet. In dieser Studie wird der CNC-Fräsprozess des CiP-DMD mit einer deployten Instanz von SSMSPC und der univariaten Post-Prozess statistischen Prozesskontrolle (SPC) verglichen, die den Industriestandard in der diskreten Fertigung repräsentiert. Die Usability wird mit Hilfe von Überwachungsprotokollen als objektives Bewertungsmaß und der System Usability Scale als subjektives Bewertungsmaß evaluiert. Es zeigt sich, dass die hervorragenden Detektions- und Lokalisierungsmöglichkeiten von SSMSPC noch nicht ausreichen, um die Ursachenanalyse effektiv zu unterstützen. Stattdessen legen die Ergebnisse der Usability-Studie nahe, die Regelkartenerweiterung von SSMSPC mit den Erkenntnissen aus einem Qualitätskontrollschritt des gefertigten Teils zu kombinieren, um die Usability der univariaten Post-Prozess-SPC sowohl aus objektiver als auch aus subjektiver Sicht zu übertreffen.

Deutsch
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-264550
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
Hinterlegungsdatum: 20 Dez 2023 13:44
Letzte Änderung: 22 Dez 2023 09:51
PPN:
Referenten: Metternich, Prof. Dr. Joachim ; Klingauf, Prof. Dr. Uwe
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: 13 Dezember 2023
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen