TU Darmstadt / ULB / TUbiblio

Clock transitions versus Bragg diffraction in atom-interferometric dark-matter detection

Derr, Daniel ; Giese, Enno (2023)
Clock transitions versus Bragg diffraction in atom-interferometric dark-matter detection.
In: AVS Quantum Science, 5 (4)
doi: 10.1116/5.0176666
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Atom interferometers with long baselines are envisioned to complement the ongoing search for dark matter. They rely on atomic manipulation based on internal (clock) transitions or state-preserving atomic diffraction. Principally, dark matter can act on the internal as well as the external degrees of freedom to both of which atom interferometers are susceptible. We, therefore, study in this contribution the effects of dark matter on the internal atomic structure and the atom's motion. In particular, we show that the atomic transition frequency depends on the mean coupling and the differential coupling of the involved states to dark matter, scaling with the unperturbed atomic transition frequency and the Compton frequency, respectively. The differential coupling is only of relevance when internal states change, which makes detectors, e.g., based on single-photon transitions sensitive to both coupling parameters. For sensors generated by state-preserving diffraction mechanisms like Bragg diffraction, the mean coupling modifies only the motion of the atom as the dominant contribution. Finally, we compare both effects observed in terrestrial dark-matter detectors.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Derr, Daniel ; Giese, Enno
Art des Eintrags: Bibliographie
Titel: Clock transitions versus Bragg diffraction in atom-interferometric dark-matter detection
Sprache: Englisch
Publikationsjahr: 19 Dezember 2023
Verlag: AIP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: AVS Quantum Science
Jahrgang/Volume einer Zeitschrift: 5
(Heft-)Nummer: 4
Kollation: 12 Seiten
DOI: 10.1116/5.0176666
Zugehörige Links:
Kurzbeschreibung (Abstract):

Atom interferometers with long baselines are envisioned to complement the ongoing search for dark matter. They rely on atomic manipulation based on internal (clock) transitions or state-preserving atomic diffraction. Principally, dark matter can act on the internal as well as the external degrees of freedom to both of which atom interferometers are susceptible. We, therefore, study in this contribution the effects of dark matter on the internal atomic structure and the atom's motion. In particular, we show that the atomic transition frequency depends on the mean coupling and the differential coupling of the involved states to dark matter, scaling with the unperturbed atomic transition frequency and the Compton frequency, respectively. The differential coupling is only of relevance when internal states change, which makes detectors, e.g., based on single-photon transitions sensitive to both coupling parameters. For sensors generated by state-preserving diffraction mechanisms like Bragg diffraction, the mean coupling modifies only the motion of the atom as the dominant contribution. Finally, we compare both effects observed in terrestrial dark-matter detectors.

Freie Schlagworte: General relativity, Gravitational waves, Metrology, Clocks, Dark matter, Interferometry, Beyond the Standard Model, Matter waves, Quantum physicists
ID-Nummer: Artikel-ID: 044404
Zusätzliche Informationen:

Erstveröffentlichung

Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Angewandte Physik
05 Fachbereich Physik > Institut für Angewandte Physik > Theoretische Quantendynamik
05 Fachbereich Physik > Institut für Angewandte Physik > Theoretische Quantenoptik
05 Fachbereich Physik > Institut für Angewandte Physik > Theoretische Quantenphysik
Hinterlegungsdatum: 18 Jan 2024 12:05
Letzte Änderung: 02 Aug 2024 08:40
PPN: 515646229
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen