Krauß, Alexander ; Gross, Thilo ; Drossel, Barbara (2022)
Master stability functions for metacommunities with two types of habitats.
In: Physical Review E, 105 (4)
doi: 10.1103/PhysRevE.105.044310
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Current questions in ecology revolve around instabilities in the dynamics on spatial networks and particularly the effect of node heterogeneity. We extend the master stability function formalism to inhomogeneous biregular networks having two types of spatial nodes. Notably, this class of systems also allows the investigation of certain types of dynamics on higher-order networks. Combined with the generalized modeling approach to study the linear stability of steady states, this is a powerful tool to numerically asses the stability of large ensembles of systems. We analyze the stability of ecological metacommunities with two distinct types of habitats analytically and numerically in order to identify several sets of conditions under which the dynamics can become stabilized by dispersal. Our analytical approach allows general insights into stabilizing and destabilizing effects in metapopulations. Specifically, we identify self-regulation and negative feedback loops between source and sink populations as stabilizing mechanisms and we show that maladaptive dispersal may be stable under certain conditions.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Krauß, Alexander ; Gross, Thilo ; Drossel, Barbara |
Art des Eintrags: | Bibliographie |
Titel: | Master stability functions for metacommunities with two types of habitats |
Sprache: | Englisch |
Publikationsjahr: | 15 April 2022 |
Verlag: | APS |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Physical Review E |
Jahrgang/Volume einer Zeitschrift: | 105 |
(Heft-)Nummer: | 4 |
DOI: | 10.1103/PhysRevE.105.044310 |
Kurzbeschreibung (Abstract): | Current questions in ecology revolve around instabilities in the dynamics on spatial networks and particularly the effect of node heterogeneity. We extend the master stability function formalism to inhomogeneous biregular networks having two types of spatial nodes. Notably, this class of systems also allows the investigation of certain types of dynamics on higher-order networks. Combined with the generalized modeling approach to study the linear stability of steady states, this is a powerful tool to numerically asses the stability of large ensembles of systems. We analyze the stability of ecological metacommunities with two distinct types of habitats analytically and numerically in order to identify several sets of conditions under which the dynamics can become stabilized by dispersal. Our analytical approach allows general insights into stabilizing and destabilizing effects in metapopulations. Specifically, we identify self-regulation and negative feedback loops between source and sink populations as stabilizing mechanisms and we show that maladaptive dispersal may be stable under certain conditions. |
Zusätzliche Informationen: | Art.No.: 044310 |
Fachbereich(e)/-gebiet(e): | 05 Fachbereich Physik 05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM)) 05 Fachbereich Physik > Institut für Festkörperphysik (2021 umbenannt in Institut für Physik Kondensierter Materie (IPKM)) > Statistische Physik und komplexe Systeme 05 Fachbereich Physik > Institut für Physik Kondensierter Materie (IPKM) 05 Fachbereich Physik > Institut für Physik Kondensierter Materie (IPKM) > Theorie komplexer Systeme |
Hinterlegungsdatum: | 20 Dez 2023 11:41 |
Letzte Änderung: | 13 Feb 2024 08:18 |
PPN: | 515520810 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |