TU Darmstadt / ULB / TUbiblio

Railway Bridge Monitoring with Minimal Sensor Deployment: Virtual Sensing and Resonance Curve-Based Drive-by Monitoring

Lorenzen, Steven Robert (2023)
Railway Bridge Monitoring with Minimal Sensor Deployment: Virtual Sensing and Resonance Curve-Based Drive-by Monitoring.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00026426
Dissertation, Erstveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

The global railway bridge infrastructure is aging and exposed to increasing traffic loads. In Germany, the average lifespan of a railway bridge is 122 years. During this time, railway vehicles have evolved significantly, leading to higher axle loads and speeds. The urgent need to extend the lifespan of these bridges has prompted an intensive search for efficient methods to assess existing bridge structures.

One approach is vibration-based monitoring, which can be categorised into direct and indirect monitoring. In direct monitoring, sensors are installed directly upon the structure. Conversely, in indirect monitoring, a passing vehicle equipped with sensors is utilised, commonly referred to as drive-by monitoring.

Direct monitoring of bridges is still rare, and when bridges are instrumented, it is typically with a sparse deployment of sensors. Hence, methods are needed to extrapolate the measured structural responses to unmeasured locations. These methods are summarized under the term virtual sensing. Existing research on virtual sensing for railway bridges reveals gaps in long-term studies, especially considering different environmental and operational conditions. Notably, 95 % of all railway bridges in Germany are short-spanned with spans less than 30 m, and there is a significant lack of research in this segment. A main focus of this dissertation was to address this research gap.

The high effort in direct instrumentation currently does not allow for monitoring of the entire railway bridge network using available technology. A cost-effective approach to monitoring railway bridges is drive-by monitoring. Despite the potential of this approach, field tests and comprehensive experiments in the context of railway bridges are rare. There is a need for a robust methodology for frequency identification of railway bridges using drive-by monitoring, especially at regular operating speeds. The development and validation of a suitable methodology form the second focus of this work.

In this dissertation, three experimental investigations were conducted to explore both the direct and indirect monitoring methodologies. The HUMVIB bridge, the railway bridge over the Schmutter river with an instrumented ICE 4, and a railway bridge in Düsseldorf (Germany) with an instrumented ICE TD were thoroughly analysed.

During the investigations, modal expansion, a method that uses the structure's eigenmodes to reconstruct unmeasured structural responses, was confirmed as a suitable methodology for virtual sensing. The investigations under different operational and environmental conditions showed that the influence of operational conditions, such as train type and speed, is dominant over environmental conditions.

The experiments also validated the developed methodology for frequency identification using drive-by monitoring for two different trains and bridges.

This work aims to make contributions to the monitoring of railway bridges by providing practical, cost-effective, and reliable methods.

Typ des Eintrags: Dissertation
Erschienen: 2023
Autor(en): Lorenzen, Steven Robert
Art des Eintrags: Erstveröffentlichung
Titel: Railway Bridge Monitoring with Minimal Sensor Deployment: Virtual Sensing and Resonance Curve-Based Drive-by Monitoring
Sprache: Englisch
Referenten: Schneider, Prof. Dr. Jens ; Waldmann-Diederich, Prof. Dr. Danièle
Publikationsjahr: 14 Dezember 2023
Ort: Darmstadt
Kollation: xxvii, 202 Seiten
Datum der mündlichen Prüfung: 28 November 2023
DOI: 10.26083/tuprints-00026426
URL / URN: https://tuprints.ulb.tu-darmstadt.de/26426
Kurzbeschreibung (Abstract):

The global railway bridge infrastructure is aging and exposed to increasing traffic loads. In Germany, the average lifespan of a railway bridge is 122 years. During this time, railway vehicles have evolved significantly, leading to higher axle loads and speeds. The urgent need to extend the lifespan of these bridges has prompted an intensive search for efficient methods to assess existing bridge structures.

One approach is vibration-based monitoring, which can be categorised into direct and indirect monitoring. In direct monitoring, sensors are installed directly upon the structure. Conversely, in indirect monitoring, a passing vehicle equipped with sensors is utilised, commonly referred to as drive-by monitoring.

Direct monitoring of bridges is still rare, and when bridges are instrumented, it is typically with a sparse deployment of sensors. Hence, methods are needed to extrapolate the measured structural responses to unmeasured locations. These methods are summarized under the term virtual sensing. Existing research on virtual sensing for railway bridges reveals gaps in long-term studies, especially considering different environmental and operational conditions. Notably, 95 % of all railway bridges in Germany are short-spanned with spans less than 30 m, and there is a significant lack of research in this segment. A main focus of this dissertation was to address this research gap.

The high effort in direct instrumentation currently does not allow for monitoring of the entire railway bridge network using available technology. A cost-effective approach to monitoring railway bridges is drive-by monitoring. Despite the potential of this approach, field tests and comprehensive experiments in the context of railway bridges are rare. There is a need for a robust methodology for frequency identification of railway bridges using drive-by monitoring, especially at regular operating speeds. The development and validation of a suitable methodology form the second focus of this work.

In this dissertation, three experimental investigations were conducted to explore both the direct and indirect monitoring methodologies. The HUMVIB bridge, the railway bridge over the Schmutter river with an instrumented ICE 4, and a railway bridge in Düsseldorf (Germany) with an instrumented ICE TD were thoroughly analysed.

During the investigations, modal expansion, a method that uses the structure's eigenmodes to reconstruct unmeasured structural responses, was confirmed as a suitable methodology for virtual sensing. The investigations under different operational and environmental conditions showed that the influence of operational conditions, such as train type and speed, is dominant over environmental conditions.

The experiments also validated the developed methodology for frequency identification using drive-by monitoring for two different trains and bridges.

This work aims to make contributions to the monitoring of railway bridges by providing practical, cost-effective, and reliable methods.

Alternatives oder übersetztes Abstract:
Alternatives AbstractSprache

Die weltweite Eisenbahnbrückeninfrastruktur altert und ist steigenden Verkehrslasten ausgesetzt. In Deutschland beträgt die durchschnittliche Lebensdauer einer Eisenbahnbrücke 122 Jahre. Während dieser Zeit haben sich die Eisenbahnfahrzeuge erheblich weiterentwickelt, was zu höheren Achslasten und Geschwindigkeiten führt. Der dringende Bedarf, die Lebensdauer dieser Brücken zu verlängern, hat zu einer intensiven Suche nach effizienten Methoden zur Bewertung bestehender Brückenstrukturen geführt.

Ein Ansatz dazu ist die schwingungsbasierte Überwachung. Diese wird typischerweise in direktes und indirektes Monitoring unterteilt. Bei der direkten Überwachung werden Sensoren direkt an der Struktur angebracht. Im Gegensatz dazu wird bei der indirekten Überwachung ein vorbeifahrendes Fahrzeug mit Sensoren verwendet, was üblicherweise als Drive-by-Monitoring bezeichnet wird.

Eine direkte Überwachung von Brücken ist derzeit noch die Ausnahme, und wenn Brücken instrumentiert sind, dann in der Regel mit einem spärlichen Einsatz von Sensoren. Daher werden Methoden benötigt, um die gemessenen Strukturantworten auf nicht gemessene Stellen zu extrapolieren. Diese Methoden werden unter dem Begriff Virtual Sensing zusammengefasst. Die vorliegenden Forschungen zum Virtual Sensing bei Eisenbahnbrücken zeigen Lücken in der Langzeituntersuchung, insbesondere unter Berücksichtigung verschiedener Umwelt- und Betriebsbedingungen. Besonders bemerkenswert ist, dass 95 % aller Eisenbahnbrücken in Deutschland mit Spannweiten kleiner als 30 m kurz gespannt sind, und es gerade in diesem Segment an Forschung mangelt. Ein Schwerpunkt dieser Dissertation war es, genau diese Forschungslücke anzugehen.

Der hohe Aufwand bei der direkten Instrumentierung erlaubt mit der zur Verfügung stehenden Technik derzeit keine Überwachung des Eisenbahnbrückennetzwerks. Ein kosteneffizienter Ansatz zur Überwachung der Eisenbahnbrücken ist das Drive-by Monitoring. Trotz des Potenzials dieses Ansatzes sind Feldtests und umfassende Experimente im Bereich der Eisenbahnbrücken selten. Es besteht ein Bedarf an einer robusten Methodik zur Frequenzidentifikation von Eisenbahnbrücken mittels Drive-by Monitoring, insbesondere bei regulären Betriebsgeschwindigkeiten. Die Entwicklung und Validierung einer geeigneten Methodik bildet den zweiten Schwerpunkt dieser Arbeit.

In dieser Dissertation wurden drei experimentelle Untersuchungen durchgeführt, um sowohl die direkte als auch die indirekte Überwachungsmethodik zu erforschen. Dabei wurden die HUMVIB-Brücke, die Eisenbahnbrücke über den Fluss Schmutter mit einem instrumentierten ICE 4 sowie eine Eisenbahnbrücke in Düsseldorf mit einem instrumentierten ICE TD detailliert analysiert.

Im Rahmen der Untersuchungen wurde die Modale Expansion, eine Methode, die die Eigenformen der Struktur zur Rekonstruktion der nicht gemessenen Strukturantworten verwendet, als geeignete Methodik für das Virtual Sensing bestätigt. Die Untersuchungen zu unterschiedlichen Betriebs- und Umweltbedingungen zeigen, dass der Einfluss der Betriebsbedingungen, wie Zugtyp und gefahrene Geschwindigkeit, gegenüber dem der Umweltbedingungen dominant ist.

Mit den Experimenten konnte ebenfalls die entwickelte Methodik zur Frequenzidentifikation mittels Drive-by Monitoring für zwei unterschiedliche Züge und Brücken validiert werden.

Diese Arbeit hat als Ziel, Beiträge zur Überwachung von Eisenbahnbrücken zu leisten, indem sie praxisnahe, kosteneffiziente und zuverlässige Methoden liefert.

Deutsch
Freie Schlagworte: Railway Bridges, Bridge Engineering, Structural Health Monitoring (SHM), Virtual Sensing, Drive-by Monitoring, Indirect Monitoring, Field Testing
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-264262
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Statik und Konstruktion
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Statik und Konstruktion > Fachgebiet Statik und Dynamik der Tragstrukturen (2024 umbenannt in "Fachgebiet datengetriebene Baudynamik")
TU-Projekte: VDI|19F2123A|ZEKISS
Hinterlegungsdatum: 14 Dez 2023 13:42
Letzte Änderung: 15 Dez 2023 11:29
PPN:
Referenten: Schneider, Prof. Dr. Jens ; Waldmann-Diederich, Prof. Dr. Danièle
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: 28 November 2023
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen