TU Darmstadt / ULB / TUbiblio

Precipitation Hardening in Ferroelectric Ceramics

Zhao, Changhao ; Gao, Shuang ; Yang, Tiannan ; Scherer, Michael ; Schultheiß, Jan ; Meier, Dennis ; Tan, Xiaoli ; Kleebe, Hans‐Joachim ; Chen, Long‐Qing ; Koruza, Jurij ; Rödel, Jürgen (2023)
Precipitation Hardening in Ferroelectric Ceramics.
In: Advanced Materials, 2021, 33 (36)
doi: 10.26083/tuprints-00020996
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Domain wall motion in ferroics, similar to dislocation motion in metals, can be tuned by well‐concepted microstructural elements. In demanding high‐power applications of piezoelectric materials, the domain wall motion is considered as a lossy hysteretic mechanism that should be restricted. Current applications for so‐called hard piezoelectrics are abundant and hinge on the use of an acceptor‐doping scheme. However, this mechanism features severe limitations due to enhanced mobility of oxygen vacancies at moderate temperatures. By analogy with metal technology, the authors present here a new solution for electroceramics, where precipitates are utilized to pin domain walls and improve piezoelectric properties. Through a sequence of sintering, nucleation, and precipitate growth, intragranular precipitates leading to a fine domain structure are developed as shown by transmission electron microscopy, piezoresponse force microscopy, and phase‐field simulation. This structure impedes the domain wall motion as elucidated by electromechanical characterization. As a result, the mechanical quality factor is increased by ≈50% and the hysteresis in electrostrain is suppressed considerably. This is even achieved with slightly increased piezoelectric coefficient and electromechanical coupling factor. This novel process can be smoothly implemented in industrial production processes and is accessible to simple laboratory experimentation for microstructure optimization and implementation in various ferroelectric systems.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Zhao, Changhao ; Gao, Shuang ; Yang, Tiannan ; Scherer, Michael ; Schultheiß, Jan ; Meier, Dennis ; Tan, Xiaoli ; Kleebe, Hans‐Joachim ; Chen, Long‐Qing ; Koruza, Jurij ; Rödel, Jürgen
Art des Eintrags: Zweitveröffentlichung
Titel: Precipitation Hardening in Ferroelectric Ceramics
Sprache: Englisch
Publikationsjahr: 11 Dezember 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Materials
Jahrgang/Volume einer Zeitschrift: 33
(Heft-)Nummer: 36
Kollation: 10 Seiten
DOI: 10.26083/tuprints-00020996
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20996
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Domain wall motion in ferroics, similar to dislocation motion in metals, can be tuned by well‐concepted microstructural elements. In demanding high‐power applications of piezoelectric materials, the domain wall motion is considered as a lossy hysteretic mechanism that should be restricted. Current applications for so‐called hard piezoelectrics are abundant and hinge on the use of an acceptor‐doping scheme. However, this mechanism features severe limitations due to enhanced mobility of oxygen vacancies at moderate temperatures. By analogy with metal technology, the authors present here a new solution for electroceramics, where precipitates are utilized to pin domain walls and improve piezoelectric properties. Through a sequence of sintering, nucleation, and precipitate growth, intragranular precipitates leading to a fine domain structure are developed as shown by transmission electron microscopy, piezoresponse force microscopy, and phase‐field simulation. This structure impedes the domain wall motion as elucidated by electromechanical characterization. As a result, the mechanical quality factor is increased by ≈50% and the hysteresis in electrostrain is suppressed considerably. This is even achieved with slightly increased piezoelectric coefficient and electromechanical coupling factor. This novel process can be smoothly implemented in industrial production processes and is accessible to simple laboratory experimentation for microstructure optimization and implementation in various ferroelectric systems.

Freie Schlagworte: dielectrics, electromechanical hardening, ferroelectrics, mechanical quality factor, precipitation
ID-Nummer: 2102421
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-209966
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Hinterlegungsdatum: 11 Dez 2023 13:58
Letzte Änderung: 12 Dez 2023 09:22
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen