TU Darmstadt / ULB / TUbiblio

Revealing the solid‐state processing mechanisms of antiferroelectric AgNbO₃ for energy storage

Zhang, Mao‐Hua ; Carstensen, Leif ; Zhao, Changhao ; Fulanović, Lovro ; Donner, Wolfgang ; Koruza, Jurij (2023)
Revealing the solid‐state processing mechanisms of antiferroelectric AgNbO₃ for energy storage.
In: Journal of the American Ceramic Society, 2021, 105 (1)
doi: 10.26083/tuprints-00021006
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

AgNbO₃ is one of the prominent lead‐free antiferroelectric (AFE) oxides, which readily exhibits a field‐induced AFE to ferroelectric phase transition and thus a high energy storage density. The solid‐state synthesis of AgNbO₃ is considered difficult and an oxidizing atmosphere is typically employed during AgNbO₃ processing, on the premise that oxygen can prevent possible decomposition of the silver oxide at high temperatures. However, details about the influence of processing parameters on the functional properties of AFE AgNbO₃ are insufficiently understood. In this work, the solid‐state reaction of a stoichiometric AgO and Nb₂O₅ mixture was investigated. We found that ball milling can convert AgO into metallic Ag, which is beneficial for lowering the reaction temperature for the formation of the perovskite phase to 500‒600℃. Moreover, the influence of the processing atmosphere (air, O₂, and N₂) was investigated by thermal analysis and in situ X‐ray diffraction. Since the reaction between Ag and Nb₂O₅ to form AgNbO₃ requires oxygen uptake, AgNbO₃ was only found to form in air and O₂, whereby the kinetics were faster in the latter case. All the sintered AgNbO₃ samples exhibited a similar crystallographic structure, although the samples processed in O₂ had a lower oxygen vacancy concentration. Despite this, well‐defined AFE double polarization loops were obtained in all cases. Our results indicate that decomposition of sliver oxide during ball milling is beneficial for the solid‐state reaction, while a pure O₂ atmosphere is not essential for the synthesis of high‐quality AgNbO₃. These findings may simplify the processing and facilitate further research of AgNbO₃‐based antiferroelectrics.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Zhang, Mao‐Hua ; Carstensen, Leif ; Zhao, Changhao ; Fulanović, Lovro ; Donner, Wolfgang ; Koruza, Jurij
Art des Eintrags: Zweitveröffentlichung
Titel: Revealing the solid‐state processing mechanisms of antiferroelectric AgNbO₃ for energy storage
Sprache: Englisch
Publikationsjahr: 11 Dezember 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Ort der Erstveröffentlichung: Oxford
Verlag: Wiley-Blackwell
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of the American Ceramic Society
Jahrgang/Volume einer Zeitschrift: 105
(Heft-)Nummer: 1
DOI: 10.26083/tuprints-00021006
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21006
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

AgNbO₃ is one of the prominent lead‐free antiferroelectric (AFE) oxides, which readily exhibits a field‐induced AFE to ferroelectric phase transition and thus a high energy storage density. The solid‐state synthesis of AgNbO₃ is considered difficult and an oxidizing atmosphere is typically employed during AgNbO₃ processing, on the premise that oxygen can prevent possible decomposition of the silver oxide at high temperatures. However, details about the influence of processing parameters on the functional properties of AFE AgNbO₃ are insufficiently understood. In this work, the solid‐state reaction of a stoichiometric AgO and Nb₂O₅ mixture was investigated. We found that ball milling can convert AgO into metallic Ag, which is beneficial for lowering the reaction temperature for the formation of the perovskite phase to 500‒600℃. Moreover, the influence of the processing atmosphere (air, O₂, and N₂) was investigated by thermal analysis and in situ X‐ray diffraction. Since the reaction between Ag and Nb₂O₅ to form AgNbO₃ requires oxygen uptake, AgNbO₃ was only found to form in air and O₂, whereby the kinetics were faster in the latter case. All the sintered AgNbO₃ samples exhibited a similar crystallographic structure, although the samples processed in O₂ had a lower oxygen vacancy concentration. Despite this, well‐defined AFE double polarization loops were obtained in all cases. Our results indicate that decomposition of sliver oxide during ball milling is beneficial for the solid‐state reaction, while a pure O₂ atmosphere is not essential for the synthesis of high‐quality AgNbO₃. These findings may simplify the processing and facilitate further research of AgNbO₃‐based antiferroelectrics.

Freie Schlagworte: AgNbO₃, antiferroelectrics, dielectric materials/properties, energy storage, in situ XRD, phase transition, solid‐state reaction, X‐ray methods
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-210069
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Strukturforschung
Hinterlegungsdatum: 11 Dez 2023 13:53
Letzte Änderung: 12 Dez 2023 09:13
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen