TU Darmstadt / ULB / TUbiblio

Simultaneous Deconvolution of In‐Plane and Out‐of‐Plane Forces of HOPG at the Atomic Scale under Ambient Conditions by Multifrequency Atomic Force Microscopy

Eichhorn, Anna L. ; Dietz, Christian (2023)
Simultaneous Deconvolution of In‐Plane and Out‐of‐Plane Forces of HOPG at the Atomic Scale under Ambient Conditions by Multifrequency Atomic Force Microscopy.
In: Advanced Materials Interfaces, 2021, 8 (20)
doi: 10.26083/tuprints-00021012
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Multifrequency atomic force microscopy (AFM) is shown to be an excellent tool for imaging crystal structures at atomic resolution in different spatial directions. However, determining the forces between single atoms remains challenging, particularly in air under ambient conditions. Developed here is a trimodal AFM approach that simultaneously acquires torsional and flexural frequency‐shift images and spectroscopic data to transfer these observables into in‐plane and out‐of‐plane forces between single bonds of highly oriented pyrolytic graphite (HOPG) at atomic resolution in air under ambient conditions based on the Fourier method. It is found that the cantilever mean deflection is an excellent indicator to understand that strong attractive interactions between the tip and the surface of HOPG in dynamic AFM imply a local lift of the topmost carbon layer when using higher eigenmodes for the topographical feedback. Cross‐talk between torsional and flexural‐oscillation modes is shown to be negligible. Interestingly, significant differences are observed in the in‐plane forces depending on the orientation of the carbon bonds relative to the direction of torsional oscillation.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Eichhorn, Anna L. ; Dietz, Christian
Art des Eintrags: Zweitveröffentlichung
Titel: Simultaneous Deconvolution of In‐Plane and Out‐of‐Plane Forces of HOPG at the Atomic Scale under Ambient Conditions by Multifrequency Atomic Force Microscopy
Sprache: Englisch
Publikationsjahr: 11 Dezember 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Materials Interfaces
Jahrgang/Volume einer Zeitschrift: 8
(Heft-)Nummer: 20
Kollation: 12 Seiten
DOI: 10.26083/tuprints-00021012
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21012
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Multifrequency atomic force microscopy (AFM) is shown to be an excellent tool for imaging crystal structures at atomic resolution in different spatial directions. However, determining the forces between single atoms remains challenging, particularly in air under ambient conditions. Developed here is a trimodal AFM approach that simultaneously acquires torsional and flexural frequency‐shift images and spectroscopic data to transfer these observables into in‐plane and out‐of‐plane forces between single bonds of highly oriented pyrolytic graphite (HOPG) at atomic resolution in air under ambient conditions based on the Fourier method. It is found that the cantilever mean deflection is an excellent indicator to understand that strong attractive interactions between the tip and the surface of HOPG in dynamic AFM imply a local lift of the topmost carbon layer when using higher eigenmodes for the topographical feedback. Cross‐talk between torsional and flexural‐oscillation modes is shown to be negligible. Interestingly, significant differences are observed in the in‐plane forces depending on the orientation of the carbon bonds relative to the direction of torsional oscillation.

Freie Schlagworte: atomic resolution, force deconvolution, highly oriented pyrolytic graphite, in‐plane and out‐of‐plane forces, trimodal atomic force microscopy
ID-Nummer: 2101288
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-210127
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physics of Surfaces
Hinterlegungsdatum: 11 Dez 2023 13:45
Letzte Änderung: 12 Dez 2023 07:59
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen