TU Darmstadt / ULB / TUbiblio

Convergence of numerical adjoint schemes arising from optimal boundary control problems of hyperbolic conservation laws

Schäfer Aguilar, Paloma ; Ulbrich, Stefan (2023)
Convergence of numerical adjoint schemes arising from optimal boundary control problems of hyperbolic conservation laws.
Report, Bibliographie

Kurzbeschreibung (Abstract)

We study the convergence of discretization schemes for the adjoint equation arising in the adjoint-based derivative computation for optimal boundary control problems governed by entropy solutions of conservation laws. As boundary control we consider piecewise continuously differentiable controls with possible discontinuities at switching times, where the smooth parts as well as the switching times serve as controls. The derivative of tracking-type objective functionals with respect to the smooth controls and the switching times can then be represented by an adjoint-based formula. The main difficulties arise from the fact that the correct adjoint state is the reversible solution of a transport equation with discontinuous coefficient and boundary conditions that lead in general to discontinuous adjoints. Moreover, the solution of the adjoint equation is non-unique and the so-called reversible solution leads to the correct adjoint-based derivative representation.

We study discrete adjoint schemes of monotone difference schemes in conservation form such as Engquist-Osher or Lax-Friedrichs scheme. We also allow that the state is computed by another numerical scheme satisfying certain convergence properties. We proof convergence results of the discrete adjoint to the reversible solution.

Typ des Eintrags: Report
Erschienen: 2023
Autor(en): Schäfer Aguilar, Paloma ; Ulbrich, Stefan
Art des Eintrags: Bibliographie
Titel: Convergence of numerical adjoint schemes arising from optimal boundary control problems of hyperbolic conservation laws
Sprache: Englisch
Publikationsjahr: 2023
URL / URN: https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/doc...
Kurzbeschreibung (Abstract):

We study the convergence of discretization schemes for the adjoint equation arising in the adjoint-based derivative computation for optimal boundary control problems governed by entropy solutions of conservation laws. As boundary control we consider piecewise continuously differentiable controls with possible discontinuities at switching times, where the smooth parts as well as the switching times serve as controls. The derivative of tracking-type objective functionals with respect to the smooth controls and the switching times can then be represented by an adjoint-based formula. The main difficulties arise from the fact that the correct adjoint state is the reversible solution of a transport equation with discontinuous coefficient and boundary conditions that lead in general to discontinuous adjoints. Moreover, the solution of the adjoint equation is non-unique and the so-called reversible solution leads to the correct adjoint-based derivative representation.

We study discrete adjoint schemes of monotone difference schemes in conservation form such as Engquist-Osher or Lax-Friedrichs scheme. We also allow that the state is computed by another numerical scheme satisfying certain convergence properties. We proof convergence results of the discrete adjoint to the reversible solution.

Zusätzliche Informationen:

Preprint

Fachbereich(e)/-gebiet(e): DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation > B04: Simulationsbasierte Optimierung und Optimales Design von Experimenten für Benetzungsvorgänge
Hinterlegungsdatum: 07 Dez 2023 13:40
Letzte Änderung: 07 Dez 2023 13:40
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen