TU Darmstadt / ULB / TUbiblio

PIA - a concept for a personal information assistant for data analysis and machine learning of time-continuous data in industrial applications

Schnur, Christopher ; Dorst, Tanja ; Deshmukh, Kapil Sajjan ; Zimmer, Sarah ; Litzenburger, Philipp ; Schneider, Tizian ; Lennard, Margies ; Müller, Rainer ; Schütze, Andreas (2023)
PIA - a concept for a personal information assistant for data analysis and machine learning of time-continuous data in industrial applications.
In: ing.grid : FAIR data management in engineering sciences, 1 (2)
doi: 10.48694/inggrid.3827
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

A database with high-quality data must be given to fully use the potential of Artificial Intelligence (AI). Especially in small and medium-sized companies with little experience with AI, the underlying database quality is often insufficient. This results in an increased manual effort to process the data before using AI. In this contribution, the authors developed a concept to enable inexperienced users to perform a first data analysis project with machine learning and record data with high quality. The concept comprises three modules: accessibility of (meta)data and knowledge, measurement and data planning, and data analysis. Furthermore, the concept was implemented as a front-end demonstrator on the example of an assembly station and published on the GitHub platform for potential users to test and review the concept.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Schnur, Christopher ; Dorst, Tanja ; Deshmukh, Kapil Sajjan ; Zimmer, Sarah ; Litzenburger, Philipp ; Schneider, Tizian ; Lennard, Margies ; Müller, Rainer ; Schütze, Andreas
Art des Eintrags: Bibliographie
Titel: PIA - a concept for a personal information assistant for data analysis and machine learning of time-continuous data in industrial applications
Sprache: Englisch
Publikationsjahr: 2023
Ort: Darmstadt
Verlag: Universitäts- und Landesbibliothek Darmstadt
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ing.grid : FAIR data management in engineering sciences
Jahrgang/Volume einer Zeitschrift: 1
(Heft-)Nummer: 2
Kollation: 19 Seiten
DOI: 10.48694/inggrid.3827
URL / URN: https://www.inggrid.org/article/id/3827/
Zugehörige Links:
Kurzbeschreibung (Abstract):

A database with high-quality data must be given to fully use the potential of Artificial Intelligence (AI). Especially in small and medium-sized companies with little experience with AI, the underlying database quality is often insufficient. This results in an increased manual effort to process the data before using AI. In this contribution, the authors developed a concept to enable inexperienced users to perform a first data analysis project with machine learning and record data with high quality. The concept comprises three modules: accessibility of (meta)data and knowledge, measurement and data planning, and data analysis. Furthermore, the concept was implemented as a front-end demonstrator on the example of an assembly station and published on the GitHub platform for potential users to test and review the concept.

Freie Schlagworte: machine learning, data analysis, measurement and data planning
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Fluidsystemtechnik (FST) (seit 01.10.2006)
16 Fachbereich Maschinenbau > Institut für Fluidsystemtechnik (FST) (seit 01.10.2006) > Forschungsdatenmanagement und digital literacy
Hinterlegungsdatum: 06 Dez 2023 13:23
Letzte Änderung: 26 Mär 2024 08:04
PPN: 513704094
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen