TU Darmstadt / ULB / TUbiblio

Comparison of Eulerian QBMM and classical Eulerian–Eulerian method for the simulation of polydisperse bubbly flows

Li, Dongyue ; Marchisio, Daniele ; Hasse, Christian ; Lucas, Dirk (2023)
Comparison of Eulerian QBMM and classical Eulerian–Eulerian method for the simulation of polydisperse bubbly flows.
In: AIChE Journal, 2019, 65 (11)
doi: 10.26083/tuprints-00016157
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The spatial gas distribution of poly‐disperse bubbly flows depends greatly on the bubble size. To reflect the resulting polycelerity, more than two momentum balance equations (typically for the gas and liquid phases) have to be considered, as done in the multifluid approach. The inhomogeneous multiple‐size group model follows this approach, also combined with a population balance model. As an alternative, in a previous work, an Eulerian quadrature‐based moments method (E‐QBMM) was implemented in OpenFOAM; however, only the drag force was included. In this work, different nondrag forces (lift, wall lubrication, and turbulent dispersion) are added to enable more complex test cases to be simulated. Simulation results obtained using E‐QBMM are compared with the classical E–E method and validated against experimental data for different test cases. The results show that there is good agreement between E‐QBMM and E–E methods for mono‐disperse cases, but E‐QBMM can better simulate the separation and segregation of small and large bubbles.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Li, Dongyue ; Marchisio, Daniele ; Hasse, Christian ; Lucas, Dirk
Art des Eintrags: Zweitveröffentlichung
Titel: Comparison of Eulerian QBMM and classical Eulerian–Eulerian method for the simulation of polydisperse bubbly flows
Sprache: Englisch
Publikationsjahr: 4 Dezember 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2019
Ort der Erstveröffentlichung: Hoboken
Verlag: Wiley-Blackwell
Titel der Zeitschrift, Zeitung oder Schriftenreihe: AIChE Journal
Jahrgang/Volume einer Zeitschrift: 65
(Heft-)Nummer: 11
Kollation: 14 Seiten
DOI: 10.26083/tuprints-00016157
URL / URN: https://tuprints.ulb.tu-darmstadt.de/16157
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

The spatial gas distribution of poly‐disperse bubbly flows depends greatly on the bubble size. To reflect the resulting polycelerity, more than two momentum balance equations (typically for the gas and liquid phases) have to be considered, as done in the multifluid approach. The inhomogeneous multiple‐size group model follows this approach, also combined with a population balance model. As an alternative, in a previous work, an Eulerian quadrature‐based moments method (E‐QBMM) was implemented in OpenFOAM; however, only the drag force was included. In this work, different nondrag forces (lift, wall lubrication, and turbulent dispersion) are added to enable more complex test cases to be simulated. Simulation results obtained using E‐QBMM are compared with the classical E–E method and validated against experimental data for different test cases. The results show that there is good agreement between E‐QBMM and E–E methods for mono‐disperse cases, but E‐QBMM can better simulate the separation and segregation of small and large bubbles.

Freie Schlagworte: bubbly flow, E–E method, E‐QBMM, non‐drag forces, wall peak
ID-Nummer: e16732
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-161575
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Simulation reaktiver Thermo-Fluid Systeme (STFS)
Hinterlegungsdatum: 04 Dez 2023 13:48
Letzte Änderung: 05 Dez 2023 08:12
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen