TU Darmstadt / ULB / TUbiblio

Robust adaptive least squares polynomial chaos expansions in high‐frequency applications

Loukrezis, Dimitrios ; Galetzka, Armin ; De Gersem, Herbert (2023)
Robust adaptive least squares polynomial chaos expansions in high‐frequency applications.
In: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2020
doi: 10.26083/tuprints-00015968
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

We present an algorithm for computing sparse, least squares‐based polynomial chaos expansions, incorporating both adaptive polynomial bases and sequential experimental designs. The algorithm is employed to approximate stochastic high‐frequency electromagnetic models in a black‐box way, in particular, given only a dataset of random parameter realizations and the corresponding observations regarding a quantity of interest, typically a scattering parameter. The construction of the polynomial basis is based on a greedy, adaptive, sensitivity‐related method. The sequential expansion of the experimental design employs different optimality criteria, with respect to the algebraic form of the least squares problem. We investigate how different conditions affect the robustness of the derived surrogate models, that is, how much the approximation accuracy varies given different experimental designs. It is found that relatively optimistic criteria perform on average better than stricter ones, yielding superior approximation accuracies for equal dataset sizes. However, the results of strict criteria are significantly more robust, as reduced variations regarding the approximation accuracy are obtained, over a range of experimental designs. Two criteria are proposed for a good accuracy‐robustness trade‐off.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Loukrezis, Dimitrios ; Galetzka, Armin ; De Gersem, Herbert
Art des Eintrags: Zweitveröffentlichung
Titel: Robust adaptive least squares polynomial chaos expansions in high‐frequency applications
Sprache: Englisch
Publikationsjahr: 4 Dezember 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Ort der Erstveröffentlichung: Chichester
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields
Kollation: 15 Seiten
DOI: 10.26083/tuprints-00015968
URL / URN: https://tuprints.ulb.tu-darmstadt.de/15968
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

We present an algorithm for computing sparse, least squares‐based polynomial chaos expansions, incorporating both adaptive polynomial bases and sequential experimental designs. The algorithm is employed to approximate stochastic high‐frequency electromagnetic models in a black‐box way, in particular, given only a dataset of random parameter realizations and the corresponding observations regarding a quantity of interest, typically a scattering parameter. The construction of the polynomial basis is based on a greedy, adaptive, sensitivity‐related method. The sequential expansion of the experimental design employs different optimality criteria, with respect to the algebraic form of the least squares problem. We investigate how different conditions affect the robustness of the derived surrogate models, that is, how much the approximation accuracy varies given different experimental designs. It is found that relatively optimistic criteria perform on average better than stricter ones, yielding superior approximation accuracies for equal dataset sizes. However, the results of strict criteria are significantly more robust, as reduced variations regarding the approximation accuracy are obtained, over a range of experimental designs. Two criteria are proposed for a good accuracy‐robustness trade‐off.

Freie Schlagworte: adaptive basis, high‐frequency electromagnetic devices, least squares regression, polynomial chaos, sequential experimental design, surrogate modeling
ID-Nummer: e2725
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-159685
Zusätzliche Informationen:

Special Issue: Advances in Forward and Inverse Surrogate Modeling for High‐Frequency Design

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Hinterlegungsdatum: 04 Dez 2023 13:49
Letzte Änderung: 08 Dez 2023 13:09
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen