Bolze, Holger ; Erfle, Peer ; Riewe, Juliane ; Bunjes, Heike ; Dietzel, Andreas ; Burg, Thomas P. (2023)
A Microfluidic Split-Flow Technology for Product Characterization in Continuous Low-Volume Nanoparticle Synthesis.
In: Micromachines, 2019, 10 (3)
doi: 10.26083/tuprints-00015928
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
A key aspect of microfluidic processes is their ability to perform chemical reactions in small volumes under continuous flow. However, a continuous process requires stable reagent flow over a prolonged period. This can be challenging in microfluidic systems, as bubbles or particles easily block or alter the flow. Online analysis of the product stream can alleviate this problem by providing a feedback signal. When this signal exceeds a pre-defined range, the process can be re-adjusted or interrupted to prevent contamination. Here we demonstrate the feasibility of this concept by implementing a microfluidic detector downstream of a segmented-flow system for the synthesis of lipid nanoparticles. To match the flow rate through the detector to the measurement bandwidth independent of the synthesis requirements, a small stream is sidelined from the original product stream and routed through a measuring channel with 2 × 2 µm cross-section. The small size of the measuring channel prevents the entry of air plugs, which are inherent to our segmented flow synthesis device. Nanoparticles passing through the small channel were detected and characterized by quantitative fluorescence measurements. With this setup, we were able to count single nanoparticles. This way, we were able to detect changes in the particle synthesis affecting the size, concentration, or velocity of the particles in suspension. We envision that the flow-splitting scheme demonstrated here can be transferred to detection methods other than fluorescence for continuous monitoring and feedback control of microfluidic nanoparticle synthesis.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Bolze, Holger ; Erfle, Peer ; Riewe, Juliane ; Bunjes, Heike ; Dietzel, Andreas ; Burg, Thomas P. |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | A Microfluidic Split-Flow Technology for Product Characterization in Continuous Low-Volume Nanoparticle Synthesis |
Sprache: | Englisch |
Publikationsjahr: | 4 Dezember 2023 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2019 |
Ort der Erstveröffentlichung: | Basel |
Verlag: | MDPI |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Micromachines |
Jahrgang/Volume einer Zeitschrift: | 10 |
(Heft-)Nummer: | 3 |
Kollation: | 16 Seiten |
DOI: | 10.26083/tuprints-00015928 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/15928 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | A key aspect of microfluidic processes is their ability to perform chemical reactions in small volumes under continuous flow. However, a continuous process requires stable reagent flow over a prolonged period. This can be challenging in microfluidic systems, as bubbles or particles easily block or alter the flow. Online analysis of the product stream can alleviate this problem by providing a feedback signal. When this signal exceeds a pre-defined range, the process can be re-adjusted or interrupted to prevent contamination. Here we demonstrate the feasibility of this concept by implementing a microfluidic detector downstream of a segmented-flow system for the synthesis of lipid nanoparticles. To match the flow rate through the detector to the measurement bandwidth independent of the synthesis requirements, a small stream is sidelined from the original product stream and routed through a measuring channel with 2 × 2 µm cross-section. The small size of the measuring channel prevents the entry of air plugs, which are inherent to our segmented flow synthesis device. Nanoparticles passing through the small channel were detected and characterized by quantitative fluorescence measurements. With this setup, we were able to count single nanoparticles. This way, we were able to detect changes in the particle synthesis affecting the size, concentration, or velocity of the particles in suspension. We envision that the flow-splitting scheme demonstrated here can be transferred to detection methods other than fluorescence for continuous monitoring and feedback control of microfluidic nanoparticle synthesis. |
Freie Schlagworte: | lipid nanoparticles, online analysis, microfluidics, plug flow mixer, fluorescence, precipitation, single particle analysis, nanoparticle characterization |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-159280 |
Zusätzliche Informationen: | This article belongs to the Special Issue Micro- and Nanofluidics for Bionanoparticle Analysis |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Integrierte Mikro-Nano-Systeme |
Hinterlegungsdatum: | 04 Dez 2023 10:20 |
Letzte Änderung: | 08 Dez 2023 13:15 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- A Microfluidic Split-Flow Technology for Product Characterization in Continuous Low-Volume Nanoparticle Synthesis. (deposited 04 Dez 2023 10:20) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |