TU Darmstadt / ULB / TUbiblio

Scaling Behavior of Pattern Formation in the Flexographic Ink Splitting Process

Brumm, Pauline ; Sauer, Hans Martin ; Dörsam, Edgar (2023)
Scaling Behavior of Pattern Formation in the Flexographic Ink Splitting Process.
In: Colloids and Interfaces, 2019, 3 (1)
doi: 10.26083/tuprints-00015820
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

We considered pattern formation, i.e. viscous fingering, in the ink splitting process between an elastic flexographic printing plate and the substrate. We observed an unexpected scaling behavior of the emerging pattern length scale (i.e., finger width) as a function of printing velocity, fluid viscosity, surface tension, and plate elasticity coefficients. Scaling exponents depended on the ratio of the capillary number of the fluid flow, and the elastocapillary number defined by plate elasticity and surface tension. The exponents significantly differed from rigid printing plates, which depend on the capillary number only. A dynamic model is proposed to predict the scaling exponents. The results indicate that flexo printing corresponded to a self-regulating dynamical equilibrium of viscous, capillary, and elastic forces. We argue that these forces stabilize the process conditions in a flexo printing unit over a wide range of printing velocities, ink viscosities, and mechanical process settings.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Brumm, Pauline ; Sauer, Hans Martin ; Dörsam, Edgar
Art des Eintrags: Zweitveröffentlichung
Titel: Scaling Behavior of Pattern Formation in the Flexographic Ink Splitting Process
Sprache: Englisch
Publikationsjahr: 1 Dezember 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2019
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Colloids and Interfaces
Jahrgang/Volume einer Zeitschrift: 3
(Heft-)Nummer: 1
Kollation: 16 Seiten
DOI: 10.26083/tuprints-00015820
URL / URN: https://tuprints.ulb.tu-darmstadt.de/15820
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

We considered pattern formation, i.e. viscous fingering, in the ink splitting process between an elastic flexographic printing plate and the substrate. We observed an unexpected scaling behavior of the emerging pattern length scale (i.e., finger width) as a function of printing velocity, fluid viscosity, surface tension, and plate elasticity coefficients. Scaling exponents depended on the ratio of the capillary number of the fluid flow, and the elastocapillary number defined by plate elasticity and surface tension. The exponents significantly differed from rigid printing plates, which depend on the capillary number only. A dynamic model is proposed to predict the scaling exponents. The results indicate that flexo printing corresponded to a self-regulating dynamical equilibrium of viscous, capillary, and elastic forces. We argue that these forces stabilize the process conditions in a flexo printing unit over a wide range of printing velocities, ink viscosities, and mechanical process settings.

Freie Schlagworte: pattern formation, ink splitting, scaling laws, elastocapillarity, viscous fingering, flexography, Saffman-Taylor instability
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-158207
Zusätzliche Informationen:

This article belongs to the Special Issue Colloids and Interfaces in Printing Technology

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Druckmaschinen und Druckverfahren (IDD)
Hinterlegungsdatum: 01 Dez 2023 14:03
Letzte Änderung: 04 Dez 2023 12:30
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen