TU Darmstadt / ULB / TUbiblio

A Feature-Based Model for the Identification of Electrical Devices in Smart Environments

Tundis, Andrea ; Faizan, Ali ; Mühlhäuser, Max (2023)
A Feature-Based Model for the Identification of Electrical Devices in Smart Environments.
In: Sensors, 2019, 19 (11)
doi: 10.26083/tuprints-00015507
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Smart Homes (SHs) represent the human side of a Smart Grid (SG). Data mining and analysis of energy data of electrical devices in SHs, e.g., for the dynamic load management, is of fundamental importance for the decision-making process of energy management both from the consumer perspective by saving money and also in terms of energy redistribution and reduction of the carbon dioxide emission, by knowing how the energy demand of a building is composed in the SG. Advanced monitoring and control mechanisms are necessary to deal with the identification of appliances. In this paper, a model for their automatic identification is proposed. It is based on a set of 19 features that are extracted by analyzing energy consumption, time usage and location from a set of device profiles. Then, machine learning approaches are employed by experimenting different classifiers based on such model for the identification of appliances and, finally, an analysis on the feature importance is provided.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Tundis, Andrea ; Faizan, Ali ; Mühlhäuser, Max
Art des Eintrags: Zweitveröffentlichung
Titel: A Feature-Based Model for the Identification of Electrical Devices in Smart Environments
Sprache: Englisch
Publikationsjahr: 1 Dezember 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2019
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Sensors
Jahrgang/Volume einer Zeitschrift: 19
(Heft-)Nummer: 11
Kollation: 20 Seiten
DOI: 10.26083/tuprints-00015507
URL / URN: https://tuprints.ulb.tu-darmstadt.de/15507
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Smart Homes (SHs) represent the human side of a Smart Grid (SG). Data mining and analysis of energy data of electrical devices in SHs, e.g., for the dynamic load management, is of fundamental importance for the decision-making process of energy management both from the consumer perspective by saving money and also in terms of energy redistribution and reduction of the carbon dioxide emission, by knowing how the energy demand of a building is composed in the SG. Advanced monitoring and control mechanisms are necessary to deal with the identification of appliances. In this paper, a model for their automatic identification is proposed. It is based on a set of 19 features that are extracted by analyzing energy consumption, time usage and location from a set of device profiles. Then, machine learning approaches are employed by experimenting different classifiers based on such model for the identification of appliances and, finally, an analysis on the feature importance is provided.

Freie Schlagworte: electrical devices, classification, energy management, machine learning, smart environment
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-155071
Zusätzliche Informationen:

This article belongs to the Special Issue Smart Monitoring and Control in the Future Internet of Things

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
Hinterlegungsdatum: 01 Dez 2023 14:18
Letzte Änderung: 04 Dez 2023 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen