TU Darmstadt / ULB / TUbiblio

Metal Nanotube/Nanowire-Based Unsupported Network Electrocatalysts

Muench, Falk (2023)
Metal Nanotube/Nanowire-Based Unsupported Network Electrocatalysts.
In: Catalysts, 2018, 8 (12)
doi: 10.26083/tuprints-00015981
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Combining 1D metal nanotubes and nanowires into cross-linked 2D and 3D architectures represents an attractive design strategy for creating tailored unsupported catalysts. Such materials complement the functionality and high surface area of the nanoscale building blocks with the stability, continuous conduction pathways, efficient mass transfer, and convenient handling of a free-standing, interconnected, open-porous superstructure. This review summarizes synthetic approaches toward metal nano-networks of varying dimensionality, including the assembly of colloidal 1D nanostructures, the buildup of nanofibrous networks by electrospinning, and direct, template-assisted deposition methods. It is outlined how the nanostructure, porosity, network architecture, and composition of such materials can be tuned by the fabrication conditions and additional processing steps. Finally, it is shown how these synthetic tools can be employed for designing and optimizing self-supported metal nano-networks for application in electrocatalysis and related fields.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Muench, Falk
Art des Eintrags: Zweitveröffentlichung
Titel: Metal Nanotube/Nanowire-Based Unsupported Network Electrocatalysts
Sprache: Englisch
Publikationsjahr: 1 Dezember 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2018
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Catalysts
Jahrgang/Volume einer Zeitschrift: 8
(Heft-)Nummer: 12
Kollation: 24 Seiten
DOI: 10.26083/tuprints-00015981
URL / URN: https://tuprints.ulb.tu-darmstadt.de/15981
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Combining 1D metal nanotubes and nanowires into cross-linked 2D and 3D architectures represents an attractive design strategy for creating tailored unsupported catalysts. Such materials complement the functionality and high surface area of the nanoscale building blocks with the stability, continuous conduction pathways, efficient mass transfer, and convenient handling of a free-standing, interconnected, open-porous superstructure. This review summarizes synthetic approaches toward metal nano-networks of varying dimensionality, including the assembly of colloidal 1D nanostructures, the buildup of nanofibrous networks by electrospinning, and direct, template-assisted deposition methods. It is outlined how the nanostructure, porosity, network architecture, and composition of such materials can be tuned by the fabrication conditions and additional processing steps. Finally, it is shown how these synthetic tools can be employed for designing and optimizing self-supported metal nano-networks for application in electrocatalysis and related fields.

Freie Schlagworte: metal nanowires, metal nanotubes, free-standing nano-architectures, nanostructure interconnection, unsupported heterogeneous catalysts, fuel cells, electrochemical sensors
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-159818
Zusätzliche Informationen:

This article belongs to the Section Electrocatalysis

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialanalytik
Hinterlegungsdatum: 01 Dez 2023 13:54
Letzte Änderung: 04 Dez 2023 13:00
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen