TU Darmstadt / ULB / TUbiblio

Fitness Activity Recognition on Smartphones Using Doppler Measurements

Fu, Biying ; Kirchbuchner, Florian ; Kuijper, Arjan ; Braun, Andreas ; Vaithyalingam Gangatharan, Dinesh (2023)
Fitness Activity Recognition on Smartphones Using Doppler Measurements.
In: Informatics, 2018, 5 (2)
doi: 10.26083/tuprints-00016027
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Quantified Self has seen an increased interest in recent years, with devices including smartwatches, smartphones, or other wearables that allow you to monitor your fitness level. This is often combined with mobile apps that use gamification aspects to motivate the user to perform fitness activities, or increase the amount of sports exercise. Thus far, most applications rely on accelerometers or gyroscopes that are integrated into the devices. They have to be worn on the body to track activities. In this work, we investigated the use of a speaker and a microphone that are integrated into a smartphone to track exercises performed close to it. We combined active sonar and Doppler signal analysis in the ultrasound spectrum that is not perceivable by humans. We wanted to measure the body weight exercises bicycles, toe touches, and squats, as these consist of challenging radial movements towards the measuring device. We have tested several classification methods, ranging from support vector machines to convolutional neural networks. We achieved an accuracy of 88% for bicycles, 97% for toe-touches and 91% for squats on our test set.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Fu, Biying ; Kirchbuchner, Florian ; Kuijper, Arjan ; Braun, Andreas ; Vaithyalingam Gangatharan, Dinesh
Art des Eintrags: Zweitveröffentlichung
Titel: Fitness Activity Recognition on Smartphones Using Doppler Measurements
Sprache: Englisch
Publikationsjahr: 1 Dezember 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2018
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Informatics
Jahrgang/Volume einer Zeitschrift: 5
(Heft-)Nummer: 2
Kollation: 14 Seiten
DOI: 10.26083/tuprints-00016027
URL / URN: https://tuprints.ulb.tu-darmstadt.de/16027
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Quantified Self has seen an increased interest in recent years, with devices including smartwatches, smartphones, or other wearables that allow you to monitor your fitness level. This is often combined with mobile apps that use gamification aspects to motivate the user to perform fitness activities, or increase the amount of sports exercise. Thus far, most applications rely on accelerometers or gyroscopes that are integrated into the devices. They have to be worn on the body to track activities. In this work, we investigated the use of a speaker and a microphone that are integrated into a smartphone to track exercises performed close to it. We combined active sonar and Doppler signal analysis in the ultrasound spectrum that is not perceivable by humans. We wanted to measure the body weight exercises bicycles, toe touches, and squats, as these consist of challenging radial movements towards the measuring device. We have tested several classification methods, ranging from support vector machines to convolutional neural networks. We achieved an accuracy of 88% for bicycles, 97% for toe-touches and 91% for squats on our test set.

Freie Schlagworte: human activity recognition, exercise recognition, mobile sensing, ultrasound sensing, Doppler effect
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-160278
Zusätzliche Informationen:

This article belongs to the Special Issue Sensor-Based Activity Recognition and Interaction

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Fraunhofer IGD
Hinterlegungsdatum: 01 Dez 2023 13:52
Letzte Änderung: 04 Dez 2023 11:59
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen