TU Darmstadt / ULB / TUbiblio

A Simplified Newton Method to Generate Snapshots for POD Models of Semilinear Optimal Control Problems

Manns, Paul ; Ulbrich, Stefan (2022)
A Simplified Newton Method to Generate Snapshots for POD Models of Semilinear Optimal Control Problems.
In: SIAM Journal on Numerical Analysis, 60 (5)
doi: 10.1137/21M1439821
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In PDE-constrained optimization, proper orthogonal decomposition (POD) provides a surrogate model of a (potentially expensive) PDE discretization on which optimization iterations are executed. Because POD models usually provide good approximation quality only locally, they have to be updated during optimization. Updating the POD model is usually expensive, however, and therefore often impossible in a model-predictive control (MPC) context. Thus, reduced models of mediocre quality might be accepted. We take the view of a simplified Newton method for solving semilinear evolution equations to derive an algorithm that can serve as an offline phase to produce a POD model. Approaches that build the POD model with impulse response snapshots can be regarded as the first Newton step in this context. In particular, POD models that are based on impulse response snapshots are extended by adding a second simplified Newton step. This procedure improves the approximation quality of the POD model significantly by introducing a moderate amount of extra computational costs during optimization or the MPC loop. We illustrate our findings with an example satisfying our assumptions.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Manns, Paul ; Ulbrich, Stefan
Art des Eintrags: Bibliographie
Titel: A Simplified Newton Method to Generate Snapshots for POD Models of Semilinear Optimal Control Problems
Sprache: Englisch
Publikationsjahr: 2022
Ort: Philadelphia
Verlag: SIAM
Titel der Zeitschrift, Zeitung oder Schriftenreihe: SIAM Journal on Numerical Analysis
Jahrgang/Volume einer Zeitschrift: 60
(Heft-)Nummer: 5
Kollation: 27 Seiten
DOI: 10.1137/21M1439821
URL / URN: https://epubs.siam.org/doi/10.1137/21M1439821
Kurzbeschreibung (Abstract):

In PDE-constrained optimization, proper orthogonal decomposition (POD) provides a surrogate model of a (potentially expensive) PDE discretization on which optimization iterations are executed. Because POD models usually provide good approximation quality only locally, they have to be updated during optimization. Updating the POD model is usually expensive, however, and therefore often impossible in a model-predictive control (MPC) context. Thus, reduced models of mediocre quality might be accepted. We take the view of a simplified Newton method for solving semilinear evolution equations to derive an algorithm that can serve as an offline phase to produce a POD model. Approaches that build the POD model with impulse response snapshots can be regarded as the first Newton step in this context. In particular, POD models that are based on impulse response snapshots are extended by adding a second simplified Newton step. This procedure improves the approximation quality of the POD model significantly by introducing a moderate amount of extra computational costs during optimization or the MPC loop. We illustrate our findings with an example satisfying our assumptions.

Fachbereich(e)/-gebiet(e): DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation > B04: Simulationsbasierte Optimierung und Optimales Design von Experimenten für Benetzungsvorgänge
04 Fachbereich Mathematik
04 Fachbereich Mathematik > Optimierung
04 Fachbereich Mathematik > Optimierung > Nonlinear Optimization
Hinterlegungsdatum: 07 Dez 2023 12:54
Letzte Änderung: 07 Dez 2023 12:54
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen