TU Darmstadt / ULB / TUbiblio

Differentiability results and sensitivity calculation for optimal control of incompressible two-phase Navier-Stokes equations with surface tension

Diehl, Elisabeth ; Haubner, Johannes ; Ulbrich, Michael ; Ulbrich, Stefan (2022)
Differentiability results and sensitivity calculation for optimal control of incompressible two-phase Navier-Stokes equations with surface tension.
In: Computational Optimization and Applications
doi: 10.1007/s10589-022-00415-6
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We analyze optimal control problems for two-phase Navier-Stokes equations with surface tension. Based on Lp-maximal regularity of the underlying linear problem and recent well-posedness results of the problem for sufficiently small data we show the differentiability of the solution with respect to initial and distributed controls for appropriate spaces resulting from the Lp-maximal regularity setting. We consider first a formulation where the interface is transformed to a hyperplane. Then we deduce differentiability results for the solution in the physical coordinates. Finally, we state an equivalent Volume-of-Fluid type formulation and use the obtained differentiability results to derive rigorosly the corresponding sensitivity equations of the Volume-of-Fluid type formulation. For objective functionals involving the velocity field or the discontinuous pressure or phase indciator field we derive differentiability results with respect to controls and state formulas for the derivative. The results of the paper form an analytical foundation for stating optimality conditions, justifying the application of derivative based optimization methods and for studying the convergence of discrete sensitivity schemes based on Volume-of-Fluid discretizations for optimal control of two-phase Navier-Stokes equations.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Diehl, Elisabeth ; Haubner, Johannes ; Ulbrich, Michael ; Ulbrich, Stefan
Art des Eintrags: Bibliographie
Titel: Differentiability results and sensitivity calculation for optimal control of incompressible two-phase Navier-Stokes equations with surface tension
Sprache: Englisch
Publikationsjahr: 2022
Ort: New York
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Computational Optimization and Applications
DOI: 10.1007/s10589-022-00415-6
URL / URN: https://link.springer.com/article/10.1007/s10589-022-00415-6
Kurzbeschreibung (Abstract):

We analyze optimal control problems for two-phase Navier-Stokes equations with surface tension. Based on Lp-maximal regularity of the underlying linear problem and recent well-posedness results of the problem for sufficiently small data we show the differentiability of the solution with respect to initial and distributed controls for appropriate spaces resulting from the Lp-maximal regularity setting. We consider first a formulation where the interface is transformed to a hyperplane. Then we deduce differentiability results for the solution in the physical coordinates. Finally, we state an equivalent Volume-of-Fluid type formulation and use the obtained differentiability results to derive rigorosly the corresponding sensitivity equations of the Volume-of-Fluid type formulation. For objective functionals involving the velocity field or the discontinuous pressure or phase indciator field we derive differentiability results with respect to controls and state formulas for the derivative. The results of the paper form an analytical foundation for stating optimality conditions, justifying the application of derivative based optimization methods and for studying the convergence of discrete sensitivity schemes based on Volume-of-Fluid discretizations for optimal control of two-phase Navier-Stokes equations.

Freie Schlagworte: Two-phase flow, Surface tension, Sharp interface, Navier-Stokes equations, Volume of fluid, Differentiability, Optimal control
Fachbereich(e)/-gebiet(e): DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation > B04: Simulationsbasierte Optimierung und Optimales Design von Experimenten für Benetzungsvorgänge
04 Fachbereich Mathematik
04 Fachbereich Mathematik > Optimierung
04 Fachbereich Mathematik > Optimierung > Nonlinear Optimization
Hinterlegungsdatum: 07 Dez 2023 13:32
Letzte Änderung: 07 Dez 2023 13:32
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen