TU Darmstadt / ULB / TUbiblio

Mathematical analysis of modified level-set equations

Bothe, D. ; Fricke, M. ; Soga, Kohei (2023)
Mathematical analysis of modified level-set equations.
doi: 10.48550/arXiv.2310.05111
Report, Bibliographie

Kurzbeschreibung (Abstract)

The linear transport equation allows to advect level-set functions to represent moving sharp interfaces in multiphase flows as zero level-sets. A recent development in computational fluid dynamics is to modify the linear transport equation by introducing a nonlinear term to preserve certain geometrical features of the level-set function, where the zero level-set must stay invariant under the modification. The present work establishes mathematical justification for a specific class of modified level-set equations on a bounded domain, generated by a given smooth velocity field in the framework of the initial/boundary value problem of Hamilton-Jacobi equations. The first main result is the existence of smooth solutions defined in a time-global tubular neighborhood of the zero level-set, where an infinite iteration of the method of characteristics within a fixed small time interval is demonstrated; the smooth solution is shown to possess the desired geometrical feature. The second main result is the existence of time-global viscosity solutions defined in the whole domain, where standard Perron's method and the comparison principle are exploited. In the first and second main results, the zero level-set is shown to be identical with the original one. The third main result is that the viscosity solution coincides with the local-in-space smooth solution in a time-global tubular neighborhood of the zero level-set, where a new aspect of localized doubling the number of variables is utilized.

Typ des Eintrags: Report
Erschienen: 2023
Autor(en): Bothe, D. ; Fricke, M. ; Soga, Kohei
Art des Eintrags: Bibliographie
Titel: Mathematical analysis of modified level-set equations
Sprache: Englisch
Publikationsjahr: 2023
DOI: 10.48550/arXiv.2310.05111
URL / URN: https://arxiv.org/abs/2310.05111v1
Kurzbeschreibung (Abstract):

The linear transport equation allows to advect level-set functions to represent moving sharp interfaces in multiphase flows as zero level-sets. A recent development in computational fluid dynamics is to modify the linear transport equation by introducing a nonlinear term to preserve certain geometrical features of the level-set function, where the zero level-set must stay invariant under the modification. The present work establishes mathematical justification for a specific class of modified level-set equations on a bounded domain, generated by a given smooth velocity field in the framework of the initial/boundary value problem of Hamilton-Jacobi equations. The first main result is the existence of smooth solutions defined in a time-global tubular neighborhood of the zero level-set, where an infinite iteration of the method of characteristics within a fixed small time interval is demonstrated; the smooth solution is shown to possess the desired geometrical feature. The second main result is the existence of time-global viscosity solutions defined in the whole domain, where standard Perron's method and the comparison principle are exploited. In the first and second main results, the zero level-set is shown to be identical with the original one. The third main result is that the viscosity solution coincides with the local-in-space smooth solution in a time-global tubular neighborhood of the zero level-set, where a new aspect of localized doubling the number of variables is utilized.

Zusätzliche Informationen:

Preprint

Fachbereich(e)/-gebiet(e): DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation > B01: Modellierung und VOF-basierte Simulation der Multiphysik irreversibler thermodynamischer Transferprozesse an dynamischen Kontaktlinien
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation > B02: Direkte Numerische Simulation lokal gekoppelter Grenzflächentransportprozesse an Kontaktlinien bei dynamischen Benetzungsprozessen
Hinterlegungsdatum: 07 Dez 2023 13:56
Letzte Änderung: 07 Dez 2023 13:56
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen