TU Darmstadt / ULB / TUbiblio

An unstructured finite-volume level set / front tracking method for two-phase flows with large density-ratios

Liu, Jun ; Tolle, Tobias ; Bothe, Dieter ; Marić, Tomislav (2023)
An unstructured finite-volume level set / front tracking method for two-phase flows with large density-ratios.
In: Journal of Computational Physics, 493
doi: 10.1016/j.jcp.2023.112426
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We extend the unstructured LEvel set / froNT tracking (LENT) method [1], [2] for handling two-phase flows with strongly different densities (high-density ratios) by providing the theoretical basis for the numerical consistency between the mass and momentum conservation in the collocated Finite Volume discretization of the single-field two-phase Navier-Stokes equations. Our analysis provides the theoretical basis for the mass conservation equation introduced by Ghods and Herrmann [3] and used in [4], [5], [6], [7], [8]. We use a mass flux that is consistent with mass conservation in the implicit Finite Volume discretization of the two-phase momentum convection term, and solve the single-field Navier-Stokes equations with our SAAMPLE segregated solution algorithm [2]. The proposed ρLENT method recovers exact numerical stability for the two-phase momentum advection of a spherical droplet with density ratios [Formel] [1,10⁴]. Numerical stability is demonstrated for in terms of the relative L∞ velocity error norm, for density-ratios in the range of [1,10⁴], dynamic viscosity-ratios in the range of [1,10⁴] and very strong surface tension forces, for challenging mercury/air and water/air fluid pairings. In addition, the solver performs well in cases characterized by strong interaction between two phases, i.e., oscillating droplets and rising bubbles. The proposed ρLENT method1 is applicable to any other two-phase flow simulation method that discretizes the single-field two-phase Navier-Stokes Equations using the collocated unstructured Finite Volume Method but does not solve an advection equation for the phase indicator using a flux-based approach, by adding the proposed geometrical approximation of the mass flux and the auxiliary mass conservation equation to the solution algorithm.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Liu, Jun ; Tolle, Tobias ; Bothe, Dieter ; Marić, Tomislav
Art des Eintrags: Bibliographie
Titel: An unstructured finite-volume level set / front tracking method for two-phase flows with large density-ratios
Sprache: Englisch
Publikationsjahr: 2023
Ort: Amsterdam
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Computational Physics
Jahrgang/Volume einer Zeitschrift: 493
DOI: 10.1016/j.jcp.2023.112426
URL / URN: https://www.sciencedirect.com/science/article/abs/pii/S00219...
Zugehörige Links:
Kurzbeschreibung (Abstract):

We extend the unstructured LEvel set / froNT tracking (LENT) method [1], [2] for handling two-phase flows with strongly different densities (high-density ratios) by providing the theoretical basis for the numerical consistency between the mass and momentum conservation in the collocated Finite Volume discretization of the single-field two-phase Navier-Stokes equations. Our analysis provides the theoretical basis for the mass conservation equation introduced by Ghods and Herrmann [3] and used in [4], [5], [6], [7], [8]. We use a mass flux that is consistent with mass conservation in the implicit Finite Volume discretization of the two-phase momentum convection term, and solve the single-field Navier-Stokes equations with our SAAMPLE segregated solution algorithm [2]. The proposed ρLENT method recovers exact numerical stability for the two-phase momentum advection of a spherical droplet with density ratios [Formel] [1,10⁴]. Numerical stability is demonstrated for in terms of the relative L∞ velocity error norm, for density-ratios in the range of [1,10⁴], dynamic viscosity-ratios in the range of [1,10⁴] and very strong surface tension forces, for challenging mercury/air and water/air fluid pairings. In addition, the solver performs well in cases characterized by strong interaction between two phases, i.e., oscillating droplets and rising bubbles. The proposed ρLENT method1 is applicable to any other two-phase flow simulation method that discretizes the single-field two-phase Navier-Stokes Equations using the collocated unstructured Finite Volume Method but does not solve an advection equation for the phase indicator using a flux-based approach, by adding the proposed geometrical approximation of the mass flux and the auxiliary mass conservation equation to the solution algorithm.

Freie Schlagworte: SFB1194_Z-INF
Zusätzliche Informationen:

Artikel-ID: 112426

Fachbereich(e)/-gebiet(e): DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation > B01: Modellierung und VOF-basierte Simulation der Multiphysik irreversibler thermodynamischer Transferprozesse an dynamischen Kontaktlinien
Hinterlegungsdatum: 07 Dez 2023 14:04
Letzte Änderung: 07 Dez 2023 14:04
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen