TU Darmstadt / ULB / TUbiblio

An analytical study of capillary rise dynamics: Critical conditions and hidden oscillations

Fricke, Mathis ; Ouro-Koura, El Assad ; Raju, Suraj ; von Klitzing, Regine ; De Coninck, Joël ; Bothe, Dieter (2023)
An analytical study of capillary rise dynamics: Critical conditions and hidden oscillations.
In: Physica D: Nonlinear Phenomena, 455
doi: 10.1016/j.physd.2023.133895
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The rise of a liquid column inside a thin capillary against the action of gravity is a prototypical example of a dynamic wetting process and plays an important role for applications but also for fundamental research in the area of multiphase fluid dynamics. Since the pioneering work by Lucas and Washburn, many research articles have been published which aim at a simplified description of the capillary rise dynamics using complexity-reduced models formulated as ordinary differential equations. Despite the fact that these models are based on profound simplifications, they may still be able to describe the essential physical mechanisms and their interplay. In this study, we focus on the phenomenon of oscillations of the liquid column. The latter has been observed experimentally for liquids with sufficiently small viscosity leading to comparably small viscous dissipation. Back in 1999, Quéré et al. formulated a condition for the appearance of rise height oscillations for an ODE model introduced by Bosanquet in 1923. This model has later been extended to include further dissipative mechanisms. In this work, we extend the mathematical analysis to a larger class of models including additional channels of dissipation. We show that Quéré’s critical condition is generalized to Ω+β<2, where Ω was introduced earlier and β is an additional non-dimensional parameter describing, e.g., contact line friction. A quantitative prediction of the oscillation dynamics is achieved from a linearization of the governing equations. We apply the theory to experimental data by Quéré et al. and, in particular, reveal the oscillatory behavior of dynamics for the nearly critically damped case of ethanol.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Fricke, Mathis ; Ouro-Koura, El Assad ; Raju, Suraj ; von Klitzing, Regine ; De Coninck, Joël ; Bothe, Dieter
Art des Eintrags: Bibliographie
Titel: An analytical study of capillary rise dynamics: Critical conditions and hidden oscillations
Sprache: Englisch
Publikationsjahr: 2023
Ort: Amsterdam
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physica D: Nonlinear Phenomena
Jahrgang/Volume einer Zeitschrift: 455
DOI: 10.1016/j.physd.2023.133895
URL / URN: https://www.sciencedirect.com/science/article/abs/pii/S01672...
Kurzbeschreibung (Abstract):

The rise of a liquid column inside a thin capillary against the action of gravity is a prototypical example of a dynamic wetting process and plays an important role for applications but also for fundamental research in the area of multiphase fluid dynamics. Since the pioneering work by Lucas and Washburn, many research articles have been published which aim at a simplified description of the capillary rise dynamics using complexity-reduced models formulated as ordinary differential equations. Despite the fact that these models are based on profound simplifications, they may still be able to describe the essential physical mechanisms and their interplay. In this study, we focus on the phenomenon of oscillations of the liquid column. The latter has been observed experimentally for liquids with sufficiently small viscosity leading to comparably small viscous dissipation. Back in 1999, Quéré et al. formulated a condition for the appearance of rise height oscillations for an ODE model introduced by Bosanquet in 1923. This model has later been extended to include further dissipative mechanisms. In this work, we extend the mathematical analysis to a larger class of models including additional channels of dissipation. We show that Quéré’s critical condition is generalized to Ω+β<2, where Ω was introduced earlier and β is an additional non-dimensional parameter describing, e.g., contact line friction. A quantitative prediction of the oscillation dynamics is achieved from a linearization of the governing equations. We apply the theory to experimental data by Quéré et al. and, in particular, reveal the oscillatory behavior of dynamics for the nearly critically damped case of ethanol.

Freie Schlagworte: SFB1194_A09
Zusätzliche Informationen:

Artikel-ID: 133895

Fachbereich(e)/-gebiet(e): DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation > B01: Modellierung und VOF-basierte Simulation der Multiphysik irreversibler thermodynamischer Transferprozesse an dynamischen Kontaktlinien
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation > B02: Direkte Numerische Simulation lokal gekoppelter Grenzflächentransportprozesse an Kontaktlinien bei dynamischen Benetzungsprozessen
Hinterlegungsdatum: 07 Dez 2023 14:07
Letzte Änderung: 07 Dez 2023 14:07
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen