TU Darmstadt / ULB / TUbiblio

CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

Boutros, Fadi ; Fang, Meiling ; Klemt, Marcel ; Fu, Biying ; Damer, Naser (2023)
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). Vancouver, Canada (18.06.2023-22.06.2023)
doi: 10.1109/CVPR52729.2023.00565
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Face image quality assessment (FIQA) estimates the utility of the captured image in achieving reliable and accurate recognition performance. This work proposes a novel FIQA method, CR-FIQA, that estimates the face image quality of a sample by learning to predict its relative classifiability. This classifiability is measured based on the allocation of the training sample feature representation in angular space with respect to its class center and the nearest negative class center. We experimentally illustrate the correlation between the face image quality and the sample relative classifiability. As such property is only observable for the training dataset, we propose to learn this property by probing internal network observations during the training process and utilizing it to predict the quality of unseen samples. Through extensive evaluation experiments on eight benchmarks and four face recognition models, we demonstrate the superiority of our proposed CR-FIQA over state-of-the-art (SOTA) FIQA algorithms. 1 1 https://github.com/fdbtrs/CR-FIQA

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Boutros, Fadi ; Fang, Meiling ; Klemt, Marcel ; Fu, Biying ; Damer, Naser
Art des Eintrags: Bibliographie
Titel: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability
Sprache: Englisch
Publikationsjahr: 22 August 2023
Verlag: IEEE
Buchtitel: Proceedings: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Veranstaltungstitel: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023)
Veranstaltungsort: Vancouver, Canada
Veranstaltungsdatum: 18.06.2023-22.06.2023
DOI: 10.1109/CVPR52729.2023.00565
Kurzbeschreibung (Abstract):

Face image quality assessment (FIQA) estimates the utility of the captured image in achieving reliable and accurate recognition performance. This work proposes a novel FIQA method, CR-FIQA, that estimates the face image quality of a sample by learning to predict its relative classifiability. This classifiability is measured based on the allocation of the training sample feature representation in angular space with respect to its class center and the nearest negative class center. We experimentally illustrate the correlation between the face image quality and the sample relative classifiability. As such property is only observable for the training dataset, we propose to learn this property by probing internal network observations during the training process and utilizing it to predict the quality of unseen samples. Through extensive evaluation experiments on eight benchmarks and four face recognition models, we demonstrate the superiority of our proposed CR-FIQA over state-of-the-art (SOTA) FIQA algorithms. 1 1 https://github.com/fdbtrs/CR-FIQA

Freie Schlagworte: Face recognition, Biometrics, Deep learning, Machine learning, Quality estimation
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 04 Dez 2023 12:51
Letzte Änderung: 31 Jan 2024 07:52
PPN: 515148504
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen