TU Darmstadt / ULB / TUbiblio

Ubiquitous multi-occupant detection in smart environments

Fährmann, Daniel ; Boutros, Fadi ; Kubon, Philipp ; Kirchbuchner, Florian ; Kuijper, Arjan ; Damer, Naser (2023)
Ubiquitous multi-occupant detection in smart environments.
In: Neural Computing and Applications
doi: 10.1007/s00521-023-09162-z
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Recent advancements in ubiquitous computing have emphasized the need for privacy-preserving occupancy detection in smart environments to enhance security. This work presents a novel occupancy detection solution utilizing privacy-aware sensing technologies. The solution analyzes time-series data to detect not only occupancy as a binary problem, but also determines whether one or multiple individuals are present in an indoor environment. On three real-world datasets, our models outperformed various state-of-the-art algorithms, achieving F1-scores up to 94.91% in single-occupancy detection and a macro F1-score of 91.55% in multi-occupancy detection. This makes our approach a promising solution for improving security in smart environments.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Fährmann, Daniel ; Boutros, Fadi ; Kubon, Philipp ; Kirchbuchner, Florian ; Kuijper, Arjan ; Damer, Naser
Art des Eintrags: Bibliographie
Titel: Ubiquitous multi-occupant detection in smart environments
Sprache: Englisch
Publikationsjahr: 27 November 2023
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Neural Computing and Applications
DOI: 10.1007/s00521-023-09162-z
Kurzbeschreibung (Abstract):

Recent advancements in ubiquitous computing have emphasized the need for privacy-preserving occupancy detection in smart environments to enhance security. This work presents a novel occupancy detection solution utilizing privacy-aware sensing technologies. The solution analyzes time-series data to detect not only occupancy as a binary problem, but also determines whether one or multiple individuals are present in an indoor environment. On three real-world datasets, our models outperformed various state-of-the-art algorithms, achieving F1-scores up to 94.91% in single-occupancy detection and a macro F1-score of 91.55% in multi-occupancy detection. This makes our approach a promising solution for improving security in smart environments.

Freie Schlagworte: Smart environments, Multivariate time series, Machine learning
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 04 Dez 2023 12:47
Letzte Änderung: 31 Jan 2024 07:43
PPN: 515148253
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen