Fährmann, Daniel ; Boutros, Fadi ; Kubon, Philipp ; Kirchbuchner, Florian ; Kuijper, Arjan ; Damer, Naser (2023)
Ubiquitous multi-occupant detection in smart environments.
In: Neural Computing and Applications
doi: 10.1007/s00521-023-09162-z
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Recent advancements in ubiquitous computing have emphasized the need for privacy-preserving occupancy detection in smart environments to enhance security. This work presents a novel occupancy detection solution utilizing privacy-aware sensing technologies. The solution analyzes time-series data to detect not only occupancy as a binary problem, but also determines whether one or multiple individuals are present in an indoor environment. On three real-world datasets, our models outperformed various state-of-the-art algorithms, achieving F1-scores up to 94.91% in single-occupancy detection and a macro F1-score of 91.55% in multi-occupancy detection. This makes our approach a promising solution for improving security in smart environments.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Fährmann, Daniel ; Boutros, Fadi ; Kubon, Philipp ; Kirchbuchner, Florian ; Kuijper, Arjan ; Damer, Naser |
Art des Eintrags: | Bibliographie |
Titel: | Ubiquitous multi-occupant detection in smart environments |
Sprache: | Englisch |
Publikationsjahr: | 27 November 2023 |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Neural Computing and Applications |
DOI: | 10.1007/s00521-023-09162-z |
Kurzbeschreibung (Abstract): | Recent advancements in ubiquitous computing have emphasized the need for privacy-preserving occupancy detection in smart environments to enhance security. This work presents a novel occupancy detection solution utilizing privacy-aware sensing technologies. The solution analyzes time-series data to detect not only occupancy as a binary problem, but also determines whether one or multiple individuals are present in an indoor environment. On three real-world datasets, our models outperformed various state-of-the-art algorithms, achieving F1-scores up to 94.91% in single-occupancy detection and a macro F1-score of 91.55% in multi-occupancy detection. This makes our approach a promising solution for improving security in smart environments. |
Freie Schlagworte: | Smart environments, Multivariate time series, Machine learning |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Graphisch-Interaktive Systeme 20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing |
Hinterlegungsdatum: | 04 Dez 2023 12:47 |
Letzte Änderung: | 31 Jan 2024 07:43 |
PPN: | 515148253 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |