TU Darmstadt / ULB / TUbiblio

Hierarchically porous carbons with highly curved surfaces for hosting single metal FeN4 sites as outstanding oxygen reduction catalysts

Chen, Guangbo ; Lu, Ruihu ; Li, Chenzhao ; Yu, Jianmin ; Li, Xiaodong ; Ni, Lingmei ; Zhang, Qi ; Zhu, Guangqi ; Liu, Shengwen ; Zhang, Jiaxu ; Kramm, Ulrike I. ; Zhao, Yan ; Wu, Gang ; Xie, Jian ; Feng, Xinliang (2023)
Hierarchically porous carbons with highly curved surfaces for hosting single metal FeN4 sites as outstanding oxygen reduction catalysts.
In: Advanced Materials, 35 (32)
doi: 10.1002/adma.202300907
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Iron–nitrogen–carbon (Fe-N-C) materials have emerged as a promising alternative to platinum-group metals for catalyzing the oxygen reduction reaction (ORR) in proton-exchange-membrane fuel cells. However, their low intrinsic activity and stability are major impediments. Herein, an Fe-N–C electrocatalyst with dense FeN4 sites on hierarchically porous carbons with highly curved surfaces (denoted as FeN4-hcC) is reported. The FeN4-hcC catalyst displays exceptional ORR activity in acidic media, with a high half-wave potential of 0.85 V (versus reversible hydrogen electrode) in 0.5 m H2SO4. When integrated into a membrane electrode assembly, the corresponding cathode displays a high maximum peak power density of 0.592 W cm−2 and demonstrates operating durability over 30 000 cycles under harsh H2/air conditions, outperforming previously reported Fe–NC electrocatalysts. These experimental and theoretical studies suggest that the curved carbon support fine-tunes the local coordination environment, lowers the energies of the Fe d-band centers, and inhibits the adsorption of oxygenated species, which can enhance the ORR activity and stability. This work provides new insight into the carbon nanostructure–activity correlation for ORR catalysis. It also offers a new approach to designing advanced single-metal-site catalysts for energy-conversion applications.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Chen, Guangbo ; Lu, Ruihu ; Li, Chenzhao ; Yu, Jianmin ; Li, Xiaodong ; Ni, Lingmei ; Zhang, Qi ; Zhu, Guangqi ; Liu, Shengwen ; Zhang, Jiaxu ; Kramm, Ulrike I. ; Zhao, Yan ; Wu, Gang ; Xie, Jian ; Feng, Xinliang
Art des Eintrags: Bibliographie
Titel: Hierarchically porous carbons with highly curved surfaces for hosting single metal FeN4 sites as outstanding oxygen reduction catalysts
Sprache: Englisch
Publikationsjahr: 3 Mai 2023
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Materials
Jahrgang/Volume einer Zeitschrift: 35
(Heft-)Nummer: 32
DOI: 10.1002/adma.202300907
Kurzbeschreibung (Abstract):

Iron–nitrogen–carbon (Fe-N-C) materials have emerged as a promising alternative to platinum-group metals for catalyzing the oxygen reduction reaction (ORR) in proton-exchange-membrane fuel cells. However, their low intrinsic activity and stability are major impediments. Herein, an Fe-N–C electrocatalyst with dense FeN4 sites on hierarchically porous carbons with highly curved surfaces (denoted as FeN4-hcC) is reported. The FeN4-hcC catalyst displays exceptional ORR activity in acidic media, with a high half-wave potential of 0.85 V (versus reversible hydrogen electrode) in 0.5 m H2SO4. When integrated into a membrane electrode assembly, the corresponding cathode displays a high maximum peak power density of 0.592 W cm−2 and demonstrates operating durability over 30 000 cycles under harsh H2/air conditions, outperforming previously reported Fe–NC electrocatalysts. These experimental and theoretical studies suggest that the curved carbon support fine-tunes the local coordination environment, lowers the energies of the Fe d-band centers, and inhibits the adsorption of oxygenated species, which can enhance the ORR activity and stability. This work provides new insight into the carbon nanostructure–activity correlation for ORR catalysis. It also offers a new approach to designing advanced single-metal-site catalysts for energy-conversion applications.

Zusätzliche Informationen:

Artikel-ID: 2300907

Fachbereich(e)/-gebiet(e): 07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie > Fachgruppe Katalysatoren und Elektrokatalysatoren
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1487: Eisen, neu gedacht!
Hinterlegungsdatum: 30 Nov 2023 06:21
Letzte Änderung: 30 Nov 2023 09:54
PPN: 513573046
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen