Chen, Guangbo ; Lu, Ruihu ; Li, Chenzhao ; Yu, Jianmin ; Li, Xiaodong ; Ni, Lingmei ; Zhang, Qi ; Zhu, Guangqi ; Liu, Shengwen ; Zhang, Jiaxu ; Kramm, Ulrike I. ; Zhao, Yan ; Wu, Gang ; Xie, Jian ; Feng, Xinliang (2023)
Hierarchically porous carbons with highly curved surfaces for hosting single metal FeN4 sites as outstanding oxygen reduction catalysts.
In: Advanced Materials, 35 (32)
doi: 10.1002/adma.202300907
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Iron–nitrogen–carbon (Fe-N-C) materials have emerged as a promising alternative to platinum-group metals for catalyzing the oxygen reduction reaction (ORR) in proton-exchange-membrane fuel cells. However, their low intrinsic activity and stability are major impediments. Herein, an Fe-N–C electrocatalyst with dense FeN4 sites on hierarchically porous carbons with highly curved surfaces (denoted as FeN4-hcC) is reported. The FeN4-hcC catalyst displays exceptional ORR activity in acidic media, with a high half-wave potential of 0.85 V (versus reversible hydrogen electrode) in 0.5 m H2SO4. When integrated into a membrane electrode assembly, the corresponding cathode displays a high maximum peak power density of 0.592 W cm−2 and demonstrates operating durability over 30 000 cycles under harsh H2/air conditions, outperforming previously reported Fe–NC electrocatalysts. These experimental and theoretical studies suggest that the curved carbon support fine-tunes the local coordination environment, lowers the energies of the Fe d-band centers, and inhibits the adsorption of oxygenated species, which can enhance the ORR activity and stability. This work provides new insight into the carbon nanostructure–activity correlation for ORR catalysis. It also offers a new approach to designing advanced single-metal-site catalysts for energy-conversion applications.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Chen, Guangbo ; Lu, Ruihu ; Li, Chenzhao ; Yu, Jianmin ; Li, Xiaodong ; Ni, Lingmei ; Zhang, Qi ; Zhu, Guangqi ; Liu, Shengwen ; Zhang, Jiaxu ; Kramm, Ulrike I. ; Zhao, Yan ; Wu, Gang ; Xie, Jian ; Feng, Xinliang |
Art des Eintrags: | Bibliographie |
Titel: | Hierarchically porous carbons with highly curved surfaces for hosting single metal FeN4 sites as outstanding oxygen reduction catalysts |
Sprache: | Englisch |
Publikationsjahr: | 3 Mai 2023 |
Verlag: | Wiley-VCH |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Advanced Materials |
Jahrgang/Volume einer Zeitschrift: | 35 |
(Heft-)Nummer: | 32 |
DOI: | 10.1002/adma.202300907 |
Kurzbeschreibung (Abstract): | Iron–nitrogen–carbon (Fe-N-C) materials have emerged as a promising alternative to platinum-group metals for catalyzing the oxygen reduction reaction (ORR) in proton-exchange-membrane fuel cells. However, their low intrinsic activity and stability are major impediments. Herein, an Fe-N–C electrocatalyst with dense FeN4 sites on hierarchically porous carbons with highly curved surfaces (denoted as FeN4-hcC) is reported. The FeN4-hcC catalyst displays exceptional ORR activity in acidic media, with a high half-wave potential of 0.85 V (versus reversible hydrogen electrode) in 0.5 m H2SO4. When integrated into a membrane electrode assembly, the corresponding cathode displays a high maximum peak power density of 0.592 W cm−2 and demonstrates operating durability over 30 000 cycles under harsh H2/air conditions, outperforming previously reported Fe–NC electrocatalysts. These experimental and theoretical studies suggest that the curved carbon support fine-tunes the local coordination environment, lowers the energies of the Fe d-band centers, and inhibits the adsorption of oxygenated species, which can enhance the ORR activity and stability. This work provides new insight into the carbon nanostructure–activity correlation for ORR catalysis. It also offers a new approach to designing advanced single-metal-site catalysts for energy-conversion applications. |
Zusätzliche Informationen: | Artikel-ID: 2300907 |
Fachbereich(e)/-gebiet(e): | 07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie > Fachgruppe Katalysatoren und Elektrokatalysatoren DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche 07 Fachbereich Chemie 07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1487: Eisen, neu gedacht! |
Hinterlegungsdatum: | 30 Nov 2023 06:21 |
Letzte Änderung: | 30 Nov 2023 09:54 |
PPN: | 513573046 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |