TU Darmstadt / ULB / TUbiblio

Construction of an active humidity regulation setup for NMR/MRI-Observation and simulation of the controlled evaporation of sessile water droplets

Kind, Jonas ; Stein, Markus ; Gambaryan-Roisman, Tatiana ; Stephan, Peter ; Zankel, Timon L. ; Thiele, Christina M. (2023)
Construction of an active humidity regulation setup for NMR/MRI-Observation and simulation of the controlled evaporation of sessile water droplets.
In: Journal of Magnetic Resonance, 348
doi: 10.1016/j.jmr.2023.107389
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Controlling and improving processes like for example the production of organic semiconductors via printing depends on understanding the interplay of wetting and evaporation of complex fluids. Therefore, examination of the time dependent composition of complex fluid droplets during wetting or evaporation is of interest. The evaporation rate of sessile droplets containing largely water depends on the vapor pressures of the individual components and on the humidity (or partial pressure) of the surrounding gas phase. Hence, for a complete picture of an evaporation process and the comparability of the results of different measurements, it is essential to measure and control the humidity and temperature in the measurement compartment. Accordingly, climate chambers are available in different scales to fit a variety of techniques like contact angle goniometry to obtain results in a controlled atmosphere. We recently reported the application of MRI (Magnetic Resonance Imaging) and spatially resolved NMR (Nuclear Magnetic Resonance) spectroscopy for the examination of the evaporation of sessile droplets on surfaces in 10 mm NMR tubes. These are considered to be closed compartments. Here, we present an apparatus to a) measure and b) control the relative humidity within the sample compartment of the NMR setup by introducing preconditioned gas into the NMR tube. We monitored the evaporation of water droplets using RARE images and compared the volume decay with a) a simple diffusive evaporation model and b) with detailed FEM (finite element numerical model) simulations using COMSOL for validation. We find three evaporation regimes depending on the flow rate as well as on the distance of the gas outlet and the evaporating droplet. In one of the sample configurations tested the evaporation takes place in such a way that it can be described with the help of the simple diffusive model without convection. Thus, the presented approach opens comparative measurements with other methods as well as the observation of droplet evaporation in very dry or very humid environments with and without the influence of convection. Finally, using PRESS spectra, it is shown that the evaporation rate of water from a water/DMSO droplet can be controlled. This shows how the setup presented here can be used to study the evaporation of droplets of more complex mixtures.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Kind, Jonas ; Stein, Markus ; Gambaryan-Roisman, Tatiana ; Stephan, Peter ; Zankel, Timon L. ; Thiele, Christina M.
Art des Eintrags: Bibliographie
Titel: Construction of an active humidity regulation setup for NMR/MRI-Observation and simulation of the controlled evaporation of sessile water droplets
Sprache: Englisch
Publikationsjahr: 2023
Ort: Amsterdam
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Magnetic Resonance
Jahrgang/Volume einer Zeitschrift: 348
DOI: 10.1016/j.jmr.2023.107389
URL / URN: https://www.sciencedirect.com/science/article/abs/pii/S10907...
Kurzbeschreibung (Abstract):

Controlling and improving processes like for example the production of organic semiconductors via printing depends on understanding the interplay of wetting and evaporation of complex fluids. Therefore, examination of the time dependent composition of complex fluid droplets during wetting or evaporation is of interest. The evaporation rate of sessile droplets containing largely water depends on the vapor pressures of the individual components and on the humidity (or partial pressure) of the surrounding gas phase. Hence, for a complete picture of an evaporation process and the comparability of the results of different measurements, it is essential to measure and control the humidity and temperature in the measurement compartment. Accordingly, climate chambers are available in different scales to fit a variety of techniques like contact angle goniometry to obtain results in a controlled atmosphere. We recently reported the application of MRI (Magnetic Resonance Imaging) and spatially resolved NMR (Nuclear Magnetic Resonance) spectroscopy for the examination of the evaporation of sessile droplets on surfaces in 10 mm NMR tubes. These are considered to be closed compartments. Here, we present an apparatus to a) measure and b) control the relative humidity within the sample compartment of the NMR setup by introducing preconditioned gas into the NMR tube. We monitored the evaporation of water droplets using RARE images and compared the volume decay with a) a simple diffusive evaporation model and b) with detailed FEM (finite element numerical model) simulations using COMSOL for validation. We find three evaporation regimes depending on the flow rate as well as on the distance of the gas outlet and the evaporating droplet. In one of the sample configurations tested the evaporation takes place in such a way that it can be described with the help of the simple diffusive model without convection. Thus, the presented approach opens comparative measurements with other methods as well as the observation of droplet evaporation in very dry or very humid environments with and without the influence of convection. Finally, using PRESS spectra, it is shown that the evaporation rate of water from a water/DMSO droplet can be controlled. This shows how the setup presented here can be used to study the evaporation of droplets of more complex mixtures.

Zusätzliche Informationen:

Artikel-ID: 107389

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Technische Thermodynamik (TTD)
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich A: Generische Experimente
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich A: Generische Experimente > A04: Strömung und Verdunstung reiner Flüssigkeiten und (Nano-) Suspensionen auf strukturierten Beschichtungen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich A: Generische Experimente > A08: Ortsaufgelöste NMR-Untersuchungen zum Verhalten von Flüssigkeiten an Festkörperoberflächen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich C: Neue und verbesserte Anwendungen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich C: Neue und verbesserte Anwendungen > C03: Kondensation von Wasser an superamphiphoben Oberflächen
Hinterlegungsdatum: 07 Dez 2023 14:50
Letzte Änderung: 11 Dez 2023 08:17
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen