TU Darmstadt / ULB / TUbiblio

Influence of Quenching and Subsequent Annealing on the Conductivity and Electromechanical Properties of Na₁/₂Bi₁/₂TiO₃-BaTiO₃

Kodumudi Venkataraman, Lalitha (2023)
Influence of Quenching and Subsequent Annealing on the Conductivity and Electromechanical Properties of Na₁/₂Bi₁/₂TiO₃-BaTiO₃.
In: Materials, 2021, 14 (9)
doi: 10.26083/tuprints-00019577
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Na₁/₂Bi₁/₂TiO₃-based materials have gained considerable attention for their potential to exhibit giant strain, very-high ionic conductivity comparable to yttria stabilized zirconia or high mechanical quality factor for use in high power ultrasonics. In recent times, quenching Na₁/₂Bi₁/₂TiO₃-based compositions have been demonstrated to enhance the thermal depolarization temperature, thus increasing the operational temperature limit of these materials in application. This work investigates the role of quenching-induced changes in the defect chemistry on the dielectric, ferroelectric and piezoelectric properties of quenched Na₁/₂Bi₁/₂TiO₃-BaTiO₃.The quenched samples indeed demonstrate an increase in the bulk conductivity. Nevertheless, while subsequent annealing of the quenched samples in air/oxygen atmosphere reverts back the depolarization behaviour to that of a furnace cooled specimen, the bulk conductivity remains majorly unaltered. This implies a weak correlation between the defect chemistry and enhanced thermal stability of the piezoelectric properties and hints towards other mechanisms at play. The minor role of oxygen vacancies is further reinforced by the negligible (10–15%) changes in the mechanical quality factor and hysteresis loss.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Kodumudi Venkataraman, Lalitha
Art des Eintrags: Zweitveröffentlichung
Titel: Influence of Quenching and Subsequent Annealing on the Conductivity and Electromechanical Properties of Na₁/₂Bi₁/₂TiO₃-BaTiO₃
Sprache: Englisch
Publikationsjahr: 28 November 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials
Jahrgang/Volume einer Zeitschrift: 14
(Heft-)Nummer: 9
Kollation: 15 Seiten
DOI: 10.26083/tuprints-00019577
URL / URN: https://tuprints.ulb.tu-darmstadt.de/19577
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Na₁/₂Bi₁/₂TiO₃-based materials have gained considerable attention for their potential to exhibit giant strain, very-high ionic conductivity comparable to yttria stabilized zirconia or high mechanical quality factor for use in high power ultrasonics. In recent times, quenching Na₁/₂Bi₁/₂TiO₃-based compositions have been demonstrated to enhance the thermal depolarization temperature, thus increasing the operational temperature limit of these materials in application. This work investigates the role of quenching-induced changes in the defect chemistry on the dielectric, ferroelectric and piezoelectric properties of quenched Na₁/₂Bi₁/₂TiO₃-BaTiO₃.The quenched samples indeed demonstrate an increase in the bulk conductivity. Nevertheless, while subsequent annealing of the quenched samples in air/oxygen atmosphere reverts back the depolarization behaviour to that of a furnace cooled specimen, the bulk conductivity remains majorly unaltered. This implies a weak correlation between the defect chemistry and enhanced thermal stability of the piezoelectric properties and hints towards other mechanisms at play. The minor role of oxygen vacancies is further reinforced by the negligible (10–15%) changes in the mechanical quality factor and hysteresis loss.

Freie Schlagworte: lead-free piezoceramics, quenching, Na₁/₂Bi₁/₂TiO₃, oxygen vacancies, thermal depolarization
ID-Nummer: 2149
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-195775
Zusätzliche Informationen:

This article belongs to the Special Issue Piezoelectric Ceramics: From Fundamentals to Applications

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Hinterlegungsdatum: 28 Nov 2023 13:46
Letzte Änderung: 29 Nov 2023 10:33
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen