TU Darmstadt / ULB / TUbiblio

A Machine Learning Enabled Image‐data‐driven End‐to‐end Mechanical Field Predictor For Dual‐Phase Steel

Lin, Binbin ; Medghalchi, Setareh ; Korte-Kerzel, Sandra ; Xu, Bai-Xiang (2023)
A Machine Learning Enabled Image‐data‐driven End‐to‐end Mechanical Field Predictor For Dual‐Phase Steel.
In: PAMM - Proceedings in Applied Mathematics & Mechanics, 2023, 22 (1)
doi: 10.26083/tuprints-00023695
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

This contribution presents convolutional neural nets (CNN) based surrogate models for prediction of von Mises stress and equivalent plastic strain fields of commonly used Dual‐Phase (DP) steels in automotive applications. The models predict field quantities in an end‐to‐end manner, driven by segmented phase images from real experimental scanning electron micrographs as inputs and FEM calculations as outputs. Hereby, we train CNN models with the U‐net neural network structure based on around 900 elastoplastic FEM simulations of various DP steel microstructure samples under tensile test. The trained CNN models are validated and tested on 250 and 50 samples, respectively. Thereby CNN models are employed sequentially for different tasks , from the real micrographs to segmented phase maps, then from segmented phase maps to stress, strain field predictions, in an end‐to‐end manner. The field predictor model results show good agreement with the test data and convincing performance on unseen microstructural dataset. This work demonstrates the large potential of a Machine Learning model to make accumulatively use of the physics‐based simulation data of large number of boundary value problems with varying microstructure. It recaptures not only the physics, implied in each simulation training data obtained from the partial different governing equations of mechanics, but also the overarching correlation between the microstructure and the stress and strain field responses.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Lin, Binbin ; Medghalchi, Setareh ; Korte-Kerzel, Sandra ; Xu, Bai-Xiang
Art des Eintrags: Zweitveröffentlichung
Titel: A Machine Learning Enabled Image‐data‐driven End‐to‐end Mechanical Field Predictor For Dual‐Phase Steel
Sprache: Englisch
Publikationsjahr: 27 November 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: PAMM - Proceedings in Applied Mathematics & Mechanics
Jahrgang/Volume einer Zeitschrift: 22
(Heft-)Nummer: 1
Kollation: 6 Seiten
DOI: 10.26083/tuprints-00023695
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23695
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

This contribution presents convolutional neural nets (CNN) based surrogate models for prediction of von Mises stress and equivalent plastic strain fields of commonly used Dual‐Phase (DP) steels in automotive applications. The models predict field quantities in an end‐to‐end manner, driven by segmented phase images from real experimental scanning electron micrographs as inputs and FEM calculations as outputs. Hereby, we train CNN models with the U‐net neural network structure based on around 900 elastoplastic FEM simulations of various DP steel microstructure samples under tensile test. The trained CNN models are validated and tested on 250 and 50 samples, respectively. Thereby CNN models are employed sequentially for different tasks , from the real micrographs to segmented phase maps, then from segmented phase maps to stress, strain field predictions, in an end‐to‐end manner. The field predictor model results show good agreement with the test data and convincing performance on unseen microstructural dataset. This work demonstrates the large potential of a Machine Learning model to make accumulatively use of the physics‐based simulation data of large number of boundary value problems with varying microstructure. It recaptures not only the physics, implied in each simulation training data obtained from the partial different governing equations of mechanics, but also the overarching correlation between the microstructure and the stress and strain field responses.

ID-Nummer: e202200110
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-236954
Zusätzliche Informationen:

Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM)

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
Hinterlegungsdatum: 27 Nov 2023 13:48
Letzte Änderung: 28 Nov 2023 06:57
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen