TU Darmstadt / ULB / TUbiblio

Upper bound on saturation time of metric graphs by intervals moving on them

Eliseev, Andrew ; Chernyshev, Vsevolod L. (2024)
Upper bound on saturation time of metric graphs by intervals moving on them.
In: Journal of Mathematical Analysis and Applications, 531 (2)
doi: 10.1016/j.jmaa.2023.127873
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In this paper we study a dynamical system of intervals moving on a metric graph with incommensurable edge lengths. This system can be generally viewed as a collection of congruent intervals moving around the network at unit speed, propagating along all respective incident edges whenever they pass through a vertex. In particular, we analyse the phenomenon of saturation: a state when the entire graph is covered by the moving intervals. Our main contributions are as follows: (1) we prove the existence of the finite moment of permanent saturation for any metric graph with incommensurable edge lengths and any positive length of the intervals; (2) we present an upper bound on the moment of permanent saturation. To show the validity of our results, we reduce the system of moving intervals to the system of dispersing moving points, for the analysis of which we mainly use methods from discrepancy theory and number theory, in particular Kronecker sequences and the famous Three Gap Theorem.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Eliseev, Andrew ; Chernyshev, Vsevolod L.
Art des Eintrags: Bibliographie
Titel: Upper bound on saturation time of metric graphs by intervals moving on them
Sprache: Englisch
Publikationsjahr: 15 März 2024
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Mathematical Analysis and Applications
Jahrgang/Volume einer Zeitschrift: 531
(Heft-)Nummer: 2
DOI: 10.1016/j.jmaa.2023.127873
Kurzbeschreibung (Abstract):

In this paper we study a dynamical system of intervals moving on a metric graph with incommensurable edge lengths. This system can be generally viewed as a collection of congruent intervals moving around the network at unit speed, propagating along all respective incident edges whenever they pass through a vertex. In particular, we analyse the phenomenon of saturation: a state when the entire graph is covered by the moving intervals. Our main contributions are as follows: (1) we prove the existence of the finite moment of permanent saturation for any metric graph with incommensurable edge lengths and any positive length of the intervals; (2) we present an upper bound on the moment of permanent saturation. To show the validity of our results, we reduce the system of moving intervals to the system of dispersing moving points, for the analysis of which we mainly use methods from discrepancy theory and number theory, in particular Kronecker sequences and the famous Three Gap Theorem.

Freie Schlagworte: metric graph, wave packet, dynamical system of points, random walk, Epsilon-net, Saturation
Zusätzliche Informationen:

Art.No.: 127873

Fachbereich(e)/-gebiet(e): DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 2222 KRITIS - Kritische Infrastrukturen. Konstruktion, Funktionskrisen und Schutz in Städten
Hinterlegungsdatum: 27 Nov 2023 12:33
Letzte Änderung: 01 Feb 2024 14:18
PPN: 515186740
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen