TU Darmstadt / ULB / TUbiblio

Dephasing versus collapse: lessons from the tight-binding model with noise

Hofmann, Marco ; Drossel, Barbara (2023)
Dephasing versus collapse: lessons from the tight-binding model with noise.
In: New Journal of Physics, 2021, 23 (10)
doi: 10.26083/tuprints-00020618
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Condensed matter physics at room temperature usually assumes that electrons in conductors can be described as spatially narrow wave packets—in contrast to what the Schrödinger equation would predict. How a finite-temperature environment can localize wave functions is still being debated. Here, we represent the environment by a fluctuating potential and investigate different unravellings of the Lindblad equation that describes the one-dimensional tight-binding model in the presence of such a potential. While all unravellings show a fast loss of phase coherence, only part of them lead to narrow wave packets, among them the quantum-state diffusion unravelling. Surprisingly, the decrease of the wave packet width for the quantum state diffusion model with increasing noise strength is slower than that of the phase coherence length. In addition to presenting analytical and numerical results, we also provide phenomenological explanations for them. We conclude that as long as no feedback between the wave function and the environment is taken into account, there will be no unique description of an open quantum system in terms of wave functions. We consider this to be an obstacle to understanding the quantum-classical transition.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Hofmann, Marco ; Drossel, Barbara
Art des Eintrags: Zweitveröffentlichung
Titel: Dephasing versus collapse: lessons from the tight-binding model with noise
Sprache: Englisch
Publikationsjahr: 21 November 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 19 Oktober 2021
Ort der Erstveröffentlichung: London
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: New Journal of Physics
Jahrgang/Volume einer Zeitschrift: 23
(Heft-)Nummer: 10
Kollation: 16 Seiten
DOI: 10.26083/tuprints-00020618
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20618
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Condensed matter physics at room temperature usually assumes that electrons in conductors can be described as spatially narrow wave packets—in contrast to what the Schrödinger equation would predict. How a finite-temperature environment can localize wave functions is still being debated. Here, we represent the environment by a fluctuating potential and investigate different unravellings of the Lindblad equation that describes the one-dimensional tight-binding model in the presence of such a potential. While all unravellings show a fast loss of phase coherence, only part of them lead to narrow wave packets, among them the quantum-state diffusion unravelling. Surprisingly, the decrease of the wave packet width for the quantum state diffusion model with increasing noise strength is slower than that of the phase coherence length. In addition to presenting analytical and numerical results, we also provide phenomenological explanations for them. We conclude that as long as no feedback between the wave function and the environment is taken into account, there will be no unique description of an open quantum system in terms of wave functions. We consider this to be an obstacle to understanding the quantum-classical transition.

Freie Schlagworte: quantum-to-classical transition, Lindblad master equation, localization, dephasing, quantum state diffusion
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-206182
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Physik Kondensierter Materie (IPKM)
Hinterlegungsdatum: 21 Nov 2023 10:44
Letzte Änderung: 27 Nov 2023 10:35
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen