TU Darmstadt / ULB / TUbiblio

Faults as Volumetric Weak Zones in Reservoir-Scale Hydro-Mechanical Finite Element Models — A Comparison Based on Grid Geometry, Mesh Resolution and Fault Dip

Treffeisen, Torben ; Henk, Andreas (2023)
Faults as Volumetric Weak Zones in Reservoir-Scale Hydro-Mechanical Finite Element Models — A Comparison Based on Grid Geometry, Mesh Resolution and Fault Dip.
In: Energies, 2020, 13 (10)
doi: 10.26083/tuprints-00016987
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

An appropriate representation of faults is fundamental for hydro-mechanical reservoir models to obtain robust quantitative insights into the spatial distribution of stress, strain and pore pressure. Using a generic model containing a reservoir layer displaced by a fault, we examine three issues which are typically encountered if faults have to be incorporated in reservoir-scale finite element simulations. These are (1) mesh resolution aspects honoring the scale difference between the typical cell size of the finite element (FE) reservoir model and the heterogeneity of a fault zone, (2) grid geometry relative to the fault geometry and (3) fault dip. Different fault representations were implemented and compared regarding those on the modeling results. Remarkable differences in the calculated stress and strain patterns as well as the pore pressure field are observed. The modeling results are used to infer some general recommendations concerning the implementation of faults in hydro-mechanical reservoir models regarding mesh resolution and grid geometry, taking into account model-scale and scope of interest. The goal is to gain more realistic simulations and, hence, more reliable results regarding fault representation in reservoir models to improve production, lower cost and reduce risk during subsurface operations.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Treffeisen, Torben ; Henk, Andreas
Art des Eintrags: Zweitveröffentlichung
Titel: Faults as Volumetric Weak Zones in Reservoir-Scale Hydro-Mechanical Finite Element Models — A Comparison Based on Grid Geometry, Mesh Resolution and Fault Dip
Sprache: Englisch
Publikationsjahr: 20 November 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Energies
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 10
Kollation: 27 Seiten
DOI: 10.26083/tuprints-00016987
URL / URN: https://tuprints.ulb.tu-darmstadt.de/16987
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

An appropriate representation of faults is fundamental for hydro-mechanical reservoir models to obtain robust quantitative insights into the spatial distribution of stress, strain and pore pressure. Using a generic model containing a reservoir layer displaced by a fault, we examine three issues which are typically encountered if faults have to be incorporated in reservoir-scale finite element simulations. These are (1) mesh resolution aspects honoring the scale difference between the typical cell size of the finite element (FE) reservoir model and the heterogeneity of a fault zone, (2) grid geometry relative to the fault geometry and (3) fault dip. Different fault representations were implemented and compared regarding those on the modeling results. Remarkable differences in the calculated stress and strain patterns as well as the pore pressure field are observed. The modeling results are used to infer some general recommendations concerning the implementation of faults in hydro-mechanical reservoir models regarding mesh resolution and grid geometry, taking into account model-scale and scope of interest. The goal is to gain more realistic simulations and, hence, more reliable results regarding fault representation in reservoir models to improve production, lower cost and reduce risk during subsurface operations.

Freie Schlagworte: faults, reservoir, hydro-mechanical modeling, finite element modeling
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-169878
Zusätzliche Informationen:

This article belongs to the Special Issue Applied Geomechanics in Petroleum Engineering

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Ingenieurgeologie
Hinterlegungsdatum: 20 Nov 2023 10:08
Letzte Änderung: 21 Nov 2023 07:37
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen