Treffeisen, Torben ; Henk, Andreas (2023)
Faults as Volumetric Weak Zones in Reservoir-Scale Hydro-Mechanical Finite Element Models — A Comparison Based on Grid Geometry, Mesh Resolution and Fault Dip.
In: Energies, 2020, 13 (10)
doi: 10.26083/tuprints-00016987
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
An appropriate representation of faults is fundamental for hydro-mechanical reservoir models to obtain robust quantitative insights into the spatial distribution of stress, strain and pore pressure. Using a generic model containing a reservoir layer displaced by a fault, we examine three issues which are typically encountered if faults have to be incorporated in reservoir-scale finite element simulations. These are (1) mesh resolution aspects honoring the scale difference between the typical cell size of the finite element (FE) reservoir model and the heterogeneity of a fault zone, (2) grid geometry relative to the fault geometry and (3) fault dip. Different fault representations were implemented and compared regarding those on the modeling results. Remarkable differences in the calculated stress and strain patterns as well as the pore pressure field are observed. The modeling results are used to infer some general recommendations concerning the implementation of faults in hydro-mechanical reservoir models regarding mesh resolution and grid geometry, taking into account model-scale and scope of interest. The goal is to gain more realistic simulations and, hence, more reliable results regarding fault representation in reservoir models to improve production, lower cost and reduce risk during subsurface operations.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Treffeisen, Torben ; Henk, Andreas |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Faults as Volumetric Weak Zones in Reservoir-Scale Hydro-Mechanical Finite Element Models — A Comparison Based on Grid Geometry, Mesh Resolution and Fault Dip |
Sprache: | Englisch |
Publikationsjahr: | 20 November 2023 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2020 |
Ort der Erstveröffentlichung: | Basel |
Verlag: | MDPI |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Energies |
Jahrgang/Volume einer Zeitschrift: | 13 |
(Heft-)Nummer: | 10 |
Kollation: | 27 Seiten |
DOI: | 10.26083/tuprints-00016987 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/16987 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | An appropriate representation of faults is fundamental for hydro-mechanical reservoir models to obtain robust quantitative insights into the spatial distribution of stress, strain and pore pressure. Using a generic model containing a reservoir layer displaced by a fault, we examine three issues which are typically encountered if faults have to be incorporated in reservoir-scale finite element simulations. These are (1) mesh resolution aspects honoring the scale difference between the typical cell size of the finite element (FE) reservoir model and the heterogeneity of a fault zone, (2) grid geometry relative to the fault geometry and (3) fault dip. Different fault representations were implemented and compared regarding those on the modeling results. Remarkable differences in the calculated stress and strain patterns as well as the pore pressure field are observed. The modeling results are used to infer some general recommendations concerning the implementation of faults in hydro-mechanical reservoir models regarding mesh resolution and grid geometry, taking into account model-scale and scope of interest. The goal is to gain more realistic simulations and, hence, more reliable results regarding fault representation in reservoir models to improve production, lower cost and reduce risk during subsurface operations. |
Freie Schlagworte: | faults, reservoir, hydro-mechanical modeling, finite element modeling |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-169878 |
Zusätzliche Informationen: | This article belongs to the Special Issue Applied Geomechanics in Petroleum Engineering |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Ingenieurgeologie |
Hinterlegungsdatum: | 20 Nov 2023 10:08 |
Letzte Änderung: | 21 Nov 2023 07:37 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Faults as Volumetric Weak Zones in Reservoir-Scale Hydro-Mechanical Finite Element Models — A Comparison Based on Grid Geometry, Mesh Resolution and Fault Dip. (deposited 20 Nov 2023 10:08) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |