TU Darmstadt / ULB / TUbiblio

Fast-Growing Bacterial Cellulose with Outstanding Mechanical Properties via Cross-Linking by Multivalent Ions

Knöller, Andrea ; Widenmeyer, Marc ; Bill, Joachim ; Burghard, Zaklina (2023)
Fast-Growing Bacterial Cellulose with Outstanding Mechanical Properties via Cross-Linking by Multivalent Ions.
In: Materials, 2020, 13 (12)
doi: 10.26083/tuprints-00016984
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Bacterial cellulose is an organic product of certain bacterias’ metabolism. It differs from plant cellulose by exhibiting a high strength and purity, making it especially interesting for flexible electronics, membranes for water purification, tissue engineering for humans or even as artificial skin and ligaments for robotic devices. However, bacterial cellulose’s naturally slow growth rate has limited its large-scale applicability to date. Titanium (IV) bis-(ammonium lactato) dihydroxide is shown to be a powerful tool to boost the growth rate of bacterial cellulose production by more than one order of magnitude and that it simultaneously serves as a precursor for the Ti⁴⁺-coordinated cross-linking of the fibers during membrane formation. The latter results in an almost two-fold increase in Young’s modulus (~18.59 GPa), a more than three-fold increase in tensile strength (~436.70 MPa) and even a four-fold increase in toughness (~6.81 MJ m⁻³), as compared to the pure bacterial cellulose membranes.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Knöller, Andrea ; Widenmeyer, Marc ; Bill, Joachim ; Burghard, Zaklina
Art des Eintrags: Zweitveröffentlichung
Titel: Fast-Growing Bacterial Cellulose with Outstanding Mechanical Properties via Cross-Linking by Multivalent Ions
Sprache: Englisch
Publikationsjahr: 20 November 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 12
Kollation: 8 Seiten
DOI: 10.26083/tuprints-00016984
URL / URN: https://tuprints.ulb.tu-darmstadt.de/16984
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Bacterial cellulose is an organic product of certain bacterias’ metabolism. It differs from plant cellulose by exhibiting a high strength and purity, making it especially interesting for flexible electronics, membranes for water purification, tissue engineering for humans or even as artificial skin and ligaments for robotic devices. However, bacterial cellulose’s naturally slow growth rate has limited its large-scale applicability to date. Titanium (IV) bis-(ammonium lactato) dihydroxide is shown to be a powerful tool to boost the growth rate of bacterial cellulose production by more than one order of magnitude and that it simultaneously serves as a precursor for the Ti⁴⁺-coordinated cross-linking of the fibers during membrane formation. The latter results in an almost two-fold increase in Young’s modulus (~18.59 GPa), a more than three-fold increase in tensile strength (~436.70 MPa) and even a four-fold increase in toughness (~6.81 MJ m⁻³), as compared to the pure bacterial cellulose membranes.

Freie Schlagworte: kombucha, bacterial cellulose, membranes, cross-linking, mechanical properties
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-169841
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Werkstofftechnik und Ressourcenmanagement
Hinterlegungsdatum: 20 Nov 2023 15:14
Letzte Änderung: 21 Nov 2023 07:35
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen