TU Darmstadt / ULB / TUbiblio

3D-Printing of Hierarchically Designed and Osteoconductive Bone Tissue Engineering Scaffolds

Söhling, Nicolas ; Neijhoft, Jonas ; Nienhaus, Vinzenz ; Acker, Valentin ; Harbig, Jana ; Menz, Fabian ; Ochs, Joachim ; Verboket, René D. ; Ritz, Ulrike ; Blaeser, Andreas ; Dörsam, Edgar ; Frank, Johannes ; Marzi, Ingo ; Henrich, Dirk (2023)
3D-Printing of Hierarchically Designed and Osteoconductive Bone Tissue Engineering Scaffolds.
In: Materials, 2020, 13 (8)
doi: 10.26083/tuprints-00016618
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In Bone Tissue Engineering (BTE), autologous bone-regenerative cells are combined with a scaffold for large bone defect treatment (LBDT). Microporous, polylactic acid (PLA) scaffolds showed good healing results in small animals. However, transfer to large animal models is not easily achieved simply by upscaling the design. Increasing diffusion distances have a negative impact on cell survival and nutrition supply, leading to cell death and ultimately implant failure. Here, a novel scaffold architecture was designed to meet all requirements for an advanced bone substitute. Biofunctional, porous subunits in a load-bearing, compression-resistant frame structure characterize this approach. An open, macro- and microporous internal architecture (100 µm–2 mm pores) optimizes conditions for oxygen and nutrient supply to the implant’s inner areas by diffusion. A prototype was 3D-printed applying Fused Filament Fabrication using PLA. After incubation with Saos-2 (Sarcoma osteogenic) cells for 14 days, cell morphology, cell distribution, cell survival (fluorescence microscopy and LDH-based cytotoxicity assay), metabolic activity (MTT test), and osteogenic gene expression were determined. The adherent cells showed colonization properties, proliferation potential, and osteogenic differentiation. The innovative design, with its porous structure, is a promising matrix for cell settlement and proliferation. The modular design allows easy upscaling and offers a solution for LBDT.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Söhling, Nicolas ; Neijhoft, Jonas ; Nienhaus, Vinzenz ; Acker, Valentin ; Harbig, Jana ; Menz, Fabian ; Ochs, Joachim ; Verboket, René D. ; Ritz, Ulrike ; Blaeser, Andreas ; Dörsam, Edgar ; Frank, Johannes ; Marzi, Ingo ; Henrich, Dirk
Art des Eintrags: Zweitveröffentlichung
Titel: 3D-Printing of Hierarchically Designed and Osteoconductive Bone Tissue Engineering Scaffolds
Sprache: Englisch
Publikationsjahr: 20 November 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Materials
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 8
Kollation: 18 Seiten
DOI: 10.26083/tuprints-00016618
URL / URN: https://tuprints.ulb.tu-darmstadt.de/16618
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

In Bone Tissue Engineering (BTE), autologous bone-regenerative cells are combined with a scaffold for large bone defect treatment (LBDT). Microporous, polylactic acid (PLA) scaffolds showed good healing results in small animals. However, transfer to large animal models is not easily achieved simply by upscaling the design. Increasing diffusion distances have a negative impact on cell survival and nutrition supply, leading to cell death and ultimately implant failure. Here, a novel scaffold architecture was designed to meet all requirements for an advanced bone substitute. Biofunctional, porous subunits in a load-bearing, compression-resistant frame structure characterize this approach. An open, macro- and microporous internal architecture (100 µm–2 mm pores) optimizes conditions for oxygen and nutrient supply to the implant’s inner areas by diffusion. A prototype was 3D-printed applying Fused Filament Fabrication using PLA. After incubation with Saos-2 (Sarcoma osteogenic) cells for 14 days, cell morphology, cell distribution, cell survival (fluorescence microscopy and LDH-based cytotoxicity assay), metabolic activity (MTT test), and osteogenic gene expression were determined. The adherent cells showed colonization properties, proliferation potential, and osteogenic differentiation. The innovative design, with its porous structure, is a promising matrix for cell settlement and proliferation. The modular design allows easy upscaling and offers a solution for LBDT.

Freie Schlagworte: Bone Tissue Engineering, smart scaffold, scaffold design, osteoconductive
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-166181
Zusätzliche Informationen:

This article belongs to the Special Issue Recent Advances in 3D Printing for Biomaterials

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin, Gesundheit
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Druckmaschinen und Druckverfahren (IDD)
16 Fachbereich Maschinenbau > Institut für Druckmaschinen und Druckverfahren (IDD) > Biomedizinische Drucktechnologie (BMT)
Hinterlegungsdatum: 20 Nov 2023 14:48
Letzte Änderung: 21 Nov 2023 07:27
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen