Söhling, Nicolas ; Neijhoft, Jonas ; Nienhaus, Vinzenz ; Acker, Valentin ; Harbig, Jana ; Menz, Fabian ; Ochs, Joachim ; Verboket, René D. ; Ritz, Ulrike ; Blaeser, Andreas ; Dörsam, Edgar ; Frank, Johannes ; Marzi, Ingo ; Henrich, Dirk (2023)
3D-Printing of Hierarchically Designed and Osteoconductive Bone Tissue Engineering Scaffolds.
In: Materials, 2020, 13 (8)
doi: 10.26083/tuprints-00016618
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
In Bone Tissue Engineering (BTE), autologous bone-regenerative cells are combined with a scaffold for large bone defect treatment (LBDT). Microporous, polylactic acid (PLA) scaffolds showed good healing results in small animals. However, transfer to large animal models is not easily achieved simply by upscaling the design. Increasing diffusion distances have a negative impact on cell survival and nutrition supply, leading to cell death and ultimately implant failure. Here, a novel scaffold architecture was designed to meet all requirements for an advanced bone substitute. Biofunctional, porous subunits in a load-bearing, compression-resistant frame structure characterize this approach. An open, macro- and microporous internal architecture (100 µm–2 mm pores) optimizes conditions for oxygen and nutrient supply to the implant’s inner areas by diffusion. A prototype was 3D-printed applying Fused Filament Fabrication using PLA. After incubation with Saos-2 (Sarcoma osteogenic) cells for 14 days, cell morphology, cell distribution, cell survival (fluorescence microscopy and LDH-based cytotoxicity assay), metabolic activity (MTT test), and osteogenic gene expression were determined. The adherent cells showed colonization properties, proliferation potential, and osteogenic differentiation. The innovative design, with its porous structure, is a promising matrix for cell settlement and proliferation. The modular design allows easy upscaling and offers a solution for LBDT.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Söhling, Nicolas ; Neijhoft, Jonas ; Nienhaus, Vinzenz ; Acker, Valentin ; Harbig, Jana ; Menz, Fabian ; Ochs, Joachim ; Verboket, René D. ; Ritz, Ulrike ; Blaeser, Andreas ; Dörsam, Edgar ; Frank, Johannes ; Marzi, Ingo ; Henrich, Dirk |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | 3D-Printing of Hierarchically Designed and Osteoconductive Bone Tissue Engineering Scaffolds |
Sprache: | Englisch |
Publikationsjahr: | 20 November 2023 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2020 |
Ort der Erstveröffentlichung: | Basel |
Verlag: | MDPI |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Materials |
Jahrgang/Volume einer Zeitschrift: | 13 |
(Heft-)Nummer: | 8 |
Kollation: | 18 Seiten |
DOI: | 10.26083/tuprints-00016618 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/16618 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | In Bone Tissue Engineering (BTE), autologous bone-regenerative cells are combined with a scaffold for large bone defect treatment (LBDT). Microporous, polylactic acid (PLA) scaffolds showed good healing results in small animals. However, transfer to large animal models is not easily achieved simply by upscaling the design. Increasing diffusion distances have a negative impact on cell survival and nutrition supply, leading to cell death and ultimately implant failure. Here, a novel scaffold architecture was designed to meet all requirements for an advanced bone substitute. Biofunctional, porous subunits in a load-bearing, compression-resistant frame structure characterize this approach. An open, macro- and microporous internal architecture (100 µm–2 mm pores) optimizes conditions for oxygen and nutrient supply to the implant’s inner areas by diffusion. A prototype was 3D-printed applying Fused Filament Fabrication using PLA. After incubation with Saos-2 (Sarcoma osteogenic) cells for 14 days, cell morphology, cell distribution, cell survival (fluorescence microscopy and LDH-based cytotoxicity assay), metabolic activity (MTT test), and osteogenic gene expression were determined. The adherent cells showed colonization properties, proliferation potential, and osteogenic differentiation. The innovative design, with its porous structure, is a promising matrix for cell settlement and proliferation. The modular design allows easy upscaling and offers a solution for LBDT. |
Freie Schlagworte: | Bone Tissue Engineering, smart scaffold, scaffold design, osteoconductive |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-166181 |
Zusätzliche Informationen: | This article belongs to the Special Issue Recent Advances in 3D Printing for Biomaterials |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin, Gesundheit 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Institut für Druckmaschinen und Druckverfahren (IDD) 16 Fachbereich Maschinenbau > Institut für Druckmaschinen und Druckverfahren (IDD) > Biomedizinische Drucktechnologie (BMT) |
Hinterlegungsdatum: | 20 Nov 2023 14:48 |
Letzte Änderung: | 21 Nov 2023 07:27 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- 3D-Printing of Hierarchically Designed and Osteoconductive Bone Tissue Engineering Scaffolds. (deposited 20 Nov 2023 14:48) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |