TU Darmstadt / ULB / TUbiblio

3D‐Printed Acidic Monolithic Catalysts for Liquid‐Phase Catalysis with Enhanced Mass Transfer Properties

Hock, Sebastian ; Rein, Christof ; Rose, Marcus (2023)
3D‐Printed Acidic Monolithic Catalysts for Liquid‐Phase Catalysis with Enhanced Mass Transfer Properties.
In: ChemCatChem, 2022, 14 (8)
doi: 10.26083/tuprints-00024524
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The thriving research and development in additive manufacturing and especially 3D printing in chemical engineering and heterogeneous catalysis enables novel and innovative approaches for the shaping of catalysts. In this work, tailor-made monoliths with complex transport pore channels are designed and printed by fused deposition modelling (FDM) from polystyrene filament. Subsequently, sulfonic acid groups are introduced by sulfonation for a catalytic functionalization of the structured monoliths’ accessible inner surface. As a catalytic test reaction, the aqueous phase hydrolysis of sucrose was chosen. For this reaction the functionalized monoliths exhibited a superior catalytic performance in both batch and continuous reaction mode in comparison to a macroporous sulfonic acid-functionalized ion exchange resin as commercial benchmark catalyst. This is due to the higher accessibility of the sulfonic acid groups on the surface of the monoliths’ pore channels and hence, enhanced effective reaction kinetics by decreased mass transfer limitations.

Typ des Eintrags: Artikel
Erschienen: 2023
Autor(en): Hock, Sebastian ; Rein, Christof ; Rose, Marcus
Art des Eintrags: Zweitveröffentlichung
Titel: 3D‐Printed Acidic Monolithic Catalysts for Liquid‐Phase Catalysis with Enhanced Mass Transfer Properties
Sprache: Englisch
Publikationsjahr: 20 November 2023
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 22 April 2022
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ChemCatChem
Jahrgang/Volume einer Zeitschrift: 14
(Heft-)Nummer: 8
Kollation: 7 Seiten
DOI: 10.26083/tuprints-00024524
URL / URN: https://tuprints.ulb.tu-darmstadt.de/24524
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

The thriving research and development in additive manufacturing and especially 3D printing in chemical engineering and heterogeneous catalysis enables novel and innovative approaches for the shaping of catalysts. In this work, tailor-made monoliths with complex transport pore channels are designed and printed by fused deposition modelling (FDM) from polystyrene filament. Subsequently, sulfonic acid groups are introduced by sulfonation for a catalytic functionalization of the structured monoliths’ accessible inner surface. As a catalytic test reaction, the aqueous phase hydrolysis of sucrose was chosen. For this reaction the functionalized monoliths exhibited a superior catalytic performance in both batch and continuous reaction mode in comparison to a macroporous sulfonic acid-functionalized ion exchange resin as commercial benchmark catalyst. This is due to the higher accessibility of the sulfonic acid groups on the surface of the monoliths’ pore channels and hence, enhanced effective reaction kinetics by decreased mass transfer limitations.

Freie Schlagworte: 3D printing, additive manufacturing, catalyst monolith, acid catalysis, hydrolysis
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-245243
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 07 Fachbereich Chemie
07 Fachbereich Chemie > Ernst-Berl-Institut > Fachgebiet Technische Chemie
Hinterlegungsdatum: 20 Nov 2023 11:02
Letzte Änderung: 21 Nov 2023 06:37
PPN:
Zugehörige Links:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen