Agnihotri, Pratyush ; Koldehofe, Boris ; Binnig, Carsten ; Luthra, Manisha (2023)
Zero-Shot Cost Models for Parallel Stream Processing.
6th International Workshop on Exploiting Artificial Intelligence Techniques for Data Management (aiDM 2023). Seattle, USA (18.06.2023-18.06.2023)
doi: 10.1145/3593078.3593934
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
This paper addresses the challenge of predicting the level of parallelism in distributed stream processing (DSP) systems, which are essential to deal with different high workload requirements of various industries such as e-commerce, online gaming, etc., where DSP systems are extensively used. Existing DSP systems rely on either manual tuning of parallelism degree or workload-driven learned models for tuning parallelism, which is either not efficient or can lead to costly operator migrations and downtime when there are workload drifts. Thus, we argue for a learned model that can autonomously decide on the right parallelism degree while generalizing across workloads and meeting the current demands of DSP applications. We propose a novel approach that leverages zero-shot cost models to predict parallelism degree while generalizing across unseen streaming workloads out-of-the-box. To reduce training effort, we propose a rule-based strategy that selects parallelism degree and meaningful transferable features related to query workload and hardware that influences the parallelism decisions. We demonstrate the effectiveness of our strategy by evaluating it with different amount of training queries and show that it achieves lower costs for parallel continuous query processing.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2023 |
Autor(en): | Agnihotri, Pratyush ; Koldehofe, Boris ; Binnig, Carsten ; Luthra, Manisha |
Art des Eintrags: | Bibliographie |
Titel: | Zero-Shot Cost Models for Parallel Stream Processing |
Sprache: | Englisch |
Publikationsjahr: | 20 Juni 2023 |
Verlag: | ACM |
Buchtitel: | Proceedings of the Sixth International Workshop on Exploiting Artificial Intelligence Techniques for Data Management |
Veranstaltungstitel: | 6th International Workshop on Exploiting Artificial Intelligence Techniques for Data Management (aiDM 2023) |
Veranstaltungsort: | Seattle, USA |
Veranstaltungsdatum: | 18.06.2023-18.06.2023 |
DOI: | 10.1145/3593078.3593934 |
Kurzbeschreibung (Abstract): | This paper addresses the challenge of predicting the level of parallelism in distributed stream processing (DSP) systems, which are essential to deal with different high workload requirements of various industries such as e-commerce, online gaming, etc., where DSP systems are extensively used. Existing DSP systems rely on either manual tuning of parallelism degree or workload-driven learned models for tuning parallelism, which is either not efficient or can lead to costly operator migrations and downtime when there are workload drifts. Thus, we argue for a learned model that can autonomously decide on the right parallelism degree while generalizing across workloads and meeting the current demands of DSP applications. We propose a novel approach that leverages zero-shot cost models to predict parallelism degree while generalizing across unseen streaming workloads out-of-the-box. To reduce training effort, we propose a rule-based strategy that selects parallelism degree and meaningful transferable features related to query workload and hardware that influences the parallelism decisions. We demonstrate the effectiveness of our strategy by evaluating it with different amount of training queries and show that it achieves lower costs for parallel continuous query processing. |
Freie Schlagworte: | parallelism prediction, distributed stream processing, zero-shot cost models |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Multimedia Kommunikation 20 Fachbereich Informatik 20 Fachbereich Informatik > Data and AI Systems DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen > Teilprojekt C2: Informationszentrische Sicht |
Hinterlegungsdatum: | 28 Nov 2023 13:30 |
Letzte Änderung: | 30 Jan 2024 10:22 |
PPN: | 515130648 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |